ICPAM-VAN 20

4th International Conference on Pure and Applied Mathematics

Van Yüzüncü Yıl University

4th International Conference on Pure and Applied Mathematics (ICPAM - VAN 2022)

BOOK OF ABSTRACTS

4th International Conference on Pure and Applied Mathematics (ICPAM-VAN 2022), Van Yüzüncü Yıl University, Van, TURKEY, June 22-23, 2022
e-ISBN: 978-975-7616-81-8
Web Page: http://icpam.yyu.edu.tr/

Scientific Committee:

Ahmed El-Sayed, Egypt
Alexander Ignatyev, Russia
Aliakbar Montazer Haghighi, USA
Amin Boumenir, USA
Bigwen Liu, PR China
Cesim Temel, Türkiye
Ching-Feng Wen, Taiwan
Deepmala, India
Esin İnan Eskitaşçıoğlu, Türkiye
Farrukh Mukhamedov, UAE
Fathalla Ali Rihan, UAE
Hakkı Duru, Türkiye
Hamid Mohammad-Sedighi, Iran
Hasib Khan, Pakistan
İ. Hakkı Denizler, Türkiye
Jen-Chih Yao, Taiwan
John R. Graef , USA
José Francisco Gómez Aguilar, Mexico
Juan E. Napoles Valdes, Argentina
Kirill S. Lapin, Russia
M. Giyas Sakar, Türkiye

Mohamed Ali Hammami, Tunisia
Mouffak Benchohra, Algeria
Muhammad Aslam Noor, Pakistan
Mujahid Abbas, Pakistan
Musa Çakır, Türkiye
Mustafa Bayram, Türkiye
Naim L. Braha, Kosova
Necat Görentaş, Türkiye
Pedro Zambrano, Colombia
Pham Huu Anh Ngoc, Vietnam
Rakkiyappan Rajan, India
S. A. Mohiuddine, Saudia Arabia

Samir Atwa Saker, Egypt
Sedova Natalya, Russia
Seenith Sivasundaram, USA
Soon-Mo Jung, South Korea
Şenay Baydaş, Türkiye
Tongxing Li, PR China
Youssef El Foutayeni, Morocco
Youssef N. Raffoul, USA
Yuanheng Wang, PR China

Sponsors:

Van Yüzüncü Yıl University
Abdullah Gül University

4th International Conference on Pure and Applied Mathematics (ICPAM-VAN 2022), Van Yüzüncü Yıl University, Van, TURKEY, June 22-23, 2022

Organizing Committee:

Hamdullah Şevli (Honorary Board - President of Van Yüzüncü Yıl University)
Esvet Akbaş (Honorary Board - Dean of Faculty of Science)
Cemil Tunç (Chair - Head of Department of Mathematics)
Necdet Akbal (Secretary)
Nagehan Alsoy Akgün (Scientific Program)
Çisem Güneş Aktaş (Scientific Program)
Zeynep Kayar (Scientific Program and Editor)
Ömer Küsmüş (Virtual Conference Organization)
Murat Luzum (Virtual Conference Organization)
Hayri Topal (Virtual Conference Organization)
Ali Hakan Tor (Webmaster, Technical Support and Contact Person)
Osman Tunç (Virtual Conference Organization)
Ramazan Yazgan (Virtual Conference Organization)
Editor: Zeynep Kayar (Van Yüzüncü Yıl University)

Sponsors:

Van Yüzüncü Yıl University
Abdullah Gül University

Welcome

Dear Participants,

Welcome to 4th International Conference on Pure and Applied Mathematics (ICPAM - VAN 2022), Van, Turkey. The conference is organized at Van Yüzüncü Yıl University from June 22nd to June 23th. Since safety and health of our guests, staff and community are of utmost importance to us, at this time, we have made the difficult decision to postpone all travels, as well as participations in ICPAM - VAN 2022 that involve large gatherings. Due to the Covid-19 concerns, this year the fourth ICPAM - VAN 2022 becomes a virtual conference, that is, it turns into an interactive seminar conducted over the internet (webinar) as the third one in 2020 while the first and the second ones were organized as face to face meetings in 2015 and 2018, respectively. The reason for our 3 -year long break is to be a host of another high involvement conference.

The purpose of the virtual conference is to provide a platform where researchers in the field of pure and applied mathematics can present their researches, exchange new ideas, discuss challenging issues, foster future collaborations and interact with each other.

With 12 invited speaker from 11 different countries, 6 parallel sessions (totally 29 sessions), 132 presentations and more than 130 participants from 16 countries, Algeria, Australia, Austria, Egypt, Germany, India, Iran, Italy, Oman, Portugal, Republic of Korea, Romania, Spain, Turkey, United Arab Emirates, USA, as well as people from 50 different universities from Turkey, ICPAM - VAN 2022 will provide a stimulating opportunity for a global interchange of ideas on recent advances in mathematics.

I would like to express my deepest gratitude to Prof. Dr. Hamdullah ŞEVLİ, President of Van Yüzüncü Yıl University, and Prof. Dr. Esvet AKBAŞ, Dean of Faculty of Science of Van Yüzüncü Yıl University, for their encouragement and support in all stages of this conference.

I am grateful to all the members of the Scientific and Organizing Committees, the referees and the authors for producing such a high standard conference.

I would also like to thank to the sponsors, Van Yüzüncü Yıl University and Abdullah Gül University for their generous support.

The last but not the least, I would like to give our heartful thanks to participants for their understanding, patience and contributions which make our conference more successful. Since the conference is almost entirely from the registration support of participants, I am grateful for their financial support as well. Thank you all again for the unbelievable amount of support and understanding you have shared during this period. It means more than words can express. We, the members of organizing committee and I, were honored and happy to organize this online meeting which provides online interactions between mathematicians who can not meet, talk and discuss face to face and offers an online collaboration and online social networks.

I wish all of you to stay healthy and safe. I look forward to the day we welcome you all back to Van, city of the sun.

Professor Cemil Tunç
Organizing Committee Chair of ICPAM - VAN 2022

Contents

Welcome 4
Scientific programme in details 10
June 22, 2022 10
Scientific programme table 15
June 23, 2022 16
Scientific programme table 23
Abstracts of invited speakers 24
Ayman BADAWI - N-zero-divisor graph of a commutative semigroup 25
Adil BAGIROV - Nonsmooth DC optimization: Methods and applications 27
Martin BOHNER - Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear and nonlinear dynamic equations 28
Ahmed Mohamed EL-SAYED - Stochastic fractional calculus operators: Basic concepts and applications 29
Soon-Mo JUNG - Generalized linear span and its applications 30
Alireza KHALILI GOLMANKHANEH - Fractal calculus needs to include fractal measure 31
Salvador LÓPEZ-ALFONSO, Manuel LÓPEZ-PELLICER, Santiago MOLL-LÓPEZ - On Nikodým, Grothendieck, Vitali-Hahn-Saks and Valdivia measure theorems 32
Alessandro PAOLUCCI, Cristina PIGNOTTI - Exponential decay for semilinear damped wave equations with delay feedback 33
Choonkil PARK - Almost hom-Poisson algebras and homomorphisms and derivations on hom-Poisson algebras 34
Sandra PINELAS - Oscillation criteria for second order neutral delay differential equations 35
Hans-Peter SCHRÖCKER - Nested bases for rational PH-curves 36
Vitalii SLYNKO - Construction of a Lyapunov function for 1-D linear hyperbolic 2×2 systems 37
Abstracts of participants' talks 39
Garvita AGRAWAL, Manjeet Singh TEETH, K. N. RAJESWARI - Properties of general- ized Fibonacci and Lucas polynomials 40
N. Rosa AIT-AMRANE, Hacene BELBACHIR, Elif TAN - A study on r-Fibonacci and r-Lucas hybrid polynomials 41
Ilker AKKUS, Betül ERDOGAN - Cholesky and $L U$ algorithms of Lucas type matrices 42
Ilker AKKUS, Safak YENIAYDIN - Spectral properties of some matrices with binomial coefficients 43
Mehmet Serif ALDEMIR, Suleyman EDIZ, Murat CANCAN - On the stratified domination number of generalized Petersen graphs 44
Imran ALI, Javid IQBAL - Second order partial differential evolutionary equations driven by variational-like inequalities 45
Nagehan ALSOY-AKGÜN - The use of dual reciprocity boundary element method for solving the coupled nonlinear Sine-Gordon equations 46
Ilhame AMIRALI, Hülya ACAR - Stability analysis for high-order Volterra delay integro- differential equation 47
Zineb ARAB, Cemil TUNÇ - On some stochastic time-fractional integral equations 48
İrem ARIK, Cemil TUNÇ - On the existence of positive periodic solutions of nonlinear neutral differential equations 49
Berna ARSLAN - Stability of Jordan k-derivations on Γ-Banach algebras 50
Okan ARSLAN, Ahmet GENÇ - On the source of semi-primeness of Γ-rings 51
Merve ARTIRAN, Zülfükar SAYGI - Roman type domination parameters of Lucas cubes 52
Enes ATA - M-extension of Lauricella hypergeometric functions and their integral repre- sentations 53
Muzaffer ATEŞ - Boundedness of solutions to a nonlinear differential equation of fourth order 54
Muzaffer ATEŞ, Rodi AYID ALI - Lyapunov stability analysis of electrical power systems 55
Harun BİÇER - Mahgoub transform method in stability research 56
Murat BODUR, Prashantkumar PATEL - Integral modification of Lupaş type operators 57
Lydia BOUCHAL, Karima MEBARKI - Multiple fixed point results for sum of operators and application 58
Zeynep CAN - A note on some spaces induced by convex polyhedra and their isometry groups 59
Sibel CANSU, Erol YILMAZ, Uğur USTAOGLU - Divided domains satisfy the weakly radical formula 60
Akram CHEHRAZI - An overview of twistor theory 61
Idris CIFTCI - QSPR investigation of leap Randić index of octanes 62
Idris CIFTCI, Suleyman EDIZ - On k-total distance degrees and related indices of graphs 63
Mustafa COSKUN - Eigen gaps to decide on graph convolutional network architecture 64
Nimet COSKUN - Spectral singularities of the Sturm-Liouville equations with a non- standard density function 65
Gökçen ÇEKİÇ - Bifurcation scheme of multi-layer flows on various wave velocities 66
Ayfer ÇETE, Yasin YAZLIK - On a solvable system of difference equations with constant coefficients 67
Pakize ÇETIN, Okan KUZU - Examination of preservice mathematics teachers' written expression skills for geometric objects: Student diaries 68
Şahap ÇETIN, Yalçın YILMAZ, Coşkun YAKAR - Quasilinearization method for a gener- alized initial-value problem on the time scale 69
Zübeyir ÇINKIR - Explicit and recursive formulas for Kirchhoff index of graphs via integer sequences such as generalized Fibonacci numbers 70
Özge DALMANOĞLU - Approximation properties of a generalization of Szász-Beta operators 71
Cahit DEDE - New infinite classes of Laplacian borderenergetic graphs 72
Ekin DELIKTAS-OZDEMIR, Ayse PEKER DOBIE - Some comparisons between the effects of planar and corrugated interfaces of a layer sandwiched between two half spaces on SH wave propagation 73
Yılmaz Mehmet DEMIRCI - Crumbling modules as injectivity domains 74
Nihal DEMİR, Hafize GÜMÜŞ - Lacunary statistical convergence of multiset sequences 75
Ceyda DEMİREL - The nabla z-transform 76
İsmail Hakkı DENİZLER - Artinian analogues of some Noetherian modules over complete semi-local commutative Noetherian rings 77
Yavuz DİNÇ, Erhan Pİ̧̧KíN, Cemil TUNÇ - Upper bounds for the blow up time for the Kirchhoff-type equation 78
Sibel DOGRU AKGÖL - New oscillation/ nonoscillation criteria for impulsive differential equations with discontinuous solutions 79
Hülya DURU, Serkan İLTER, Aygül BİLGİN - A first countable Hausdorff topology induced by a quasi-uniformity 80
Ramazan EKMEKÇİ - Almost continuity and almost compactness in graded ditopological texture spaces 81
Elif ERÇELİK, Mustafa NADAR - Nonnegative bias reduction methods for density esti- mation using scaled inverse chi-squared kernel estimator 82
Sultan ERDUR, Cemil TUNÇ - Stability, boundedness and existence of periodic solutions of some fourth order non-linear differential equations with multiple delays 83
Sare Buse ERSU - On stability of linear difference systems 84
Figen ERYILMAZ - Cofinitely ss-lifting modules 85
Beyaz Basak ESKISEHIRLI - An operator-theoretic setting of singly-generated invariant subspaces in the polydisc 86
Cansu EVCIN - Optimal control on the MHD mixed convection flow with transverse mag- netic field 87
Boutheina FELLAHI, Bachir MERIKHI - A logarithmic barrier interior point method for linear programming 88
Şehmus FINDIK - On automorphisms of symmetric polynomials of noncommutative algebras 89
Kerem GEZER, Mine MENEKŞE YILMAZ - The Voronovskaja type theorem for a class of Kantorovich type operators associated with the Charlier polynomials I 90
Melek GÖZEN - New qualitative criteria to certain vector differential equations of second order 91
Ghania GUETTAI, Mourad RAHMANI - A new class of $m-(p, q)$-Bernoulli polynomials 92
Baransel GUNES, Musa CAKIR - A fully discrete scheme for singularly perturbed semilin- ear integro-differential equations with two integral boundary conditions 93
Betül GÜDÜK İBRAHIMOĞLU, Mustafa Taylan ŞENGÜL - On the analysis of a model with Holling type-III functional response consisting of super predator, intermediate predator and prey 94
Kübra GÜL - On the Perrin hybrid quaternions 95
Rabia GÜLERYÜZ, Burak UYAR - Introduction to Grey models 96
Hafize GÜMÜŞ - A generalized form of ρ-statistical convergence of interval numbers 97
Çisem GÜNEŞ AKTAŞ - Arithmetical reduction of classification problems of singular K3- surfaces 98
Mehmet GÜRDAL, Hamdullah BAŞARAN - Advanced refinements of Berezin number in- equalities 99
Ali HAMIDOGLU - On designing discrete-time games from continuous-time models 100
Ilham HASSI, Mohamed Amine BOUTICHE - The detour index of graph products 101
Karim HEDAYATIAN, Mohammad NAMEGOSHAYFARD - On commutant hypercyclicity and commutant transitivity of some operators 102
Amel HIOUAL, Adel OUANNAS, Taki Eddine OUSSAEIF, Zineb LAOUAR - On fractional variable-order neural networks based on the Caputo derivative 103
İlhan İÇEN, Abdullah Fatih ÖZCAN - Every gobal action defines a local equivalence relation 104
Seda İGRET ARAZ - Applications of the piecewise derivative to real-world problems 105
Serkan İLTER, Hülya DURU, Seyit KOCA, Havva Nur ÖZTÜRK - A C ${ }^{1}$ approximation on differential inclusions 106
Merve KARA, Ömer AKTAŞ - On solutions of three-dimensional system of difference equa- tions 107
Neriman KARTAL - Stability and bifurcation analysis of a COVID-19 mathematical model on Erdős Rényi network 108
Gülistan KAYA GÖK - Different bounds for degree Kirchhoff index 109
Zeynep KAYAR, Billur KAYMAKÇALAN - Novel delta and nabla Pachpatte type inequal- ities via convexity 110
Billur KAYMAKÇALAN, Zeynep KAYAR - Diamond-alpha Pachpatte type dynamic in- equalities 111
Nurten KILIÇ - On oscillation of solutions of advanced differential equations 112
Gonca KIZILASLAN - Factorization of a statistical matrix 113
Mustafa Kutay KUTLU, Engin MERMUT - Roth's theorem on arithmetic progressions 114
Ömer KÜSMÜŞ - A note on nilpotent units in commutative group rings of direct product groups 115
Zineb LAOUAR, Nouria ARAR, Amel HIOUAL - On the numerical solution of the frac- tional integro-differential equation using shifted Chebyshev polynomials of the third kind 116
Murat LUZUM, İsmail Hakkı DENİZLER - On semicommutative rings in term of nilpotent elements 117
Jasbir Singh MANHAS - Boundedness of sum of generalized weighted composition operators between weighted spaces of analytic functions 118
Kasım MANSIZ, Cemil TUNÇ- On the behavior of solutions of Riemann-Liouville fractional nonlinear equation with multiple variable delays 119
Sanda MICULA- A superconvergent collocation method for two-dimensional Hammerstein integral equations 120
Oktay Sh. MUKHTAROV, Merve YUCEL, Kadriye AYDEMIR - Approximate solution of the transmission problem via transform method 121
Ali MUSALİ, Çağrı SAĞLAM, Mustafa Kerem YÜKSEL - Hopf bifurcations in a model of epidemic awareness 122
Burcu Nİ̧ANCI TÜRKMEN, Yılmaz Mehmet DEMİRCİ - Injective modules are ss-lifting in R-mod 123
Zozan OKTAN, Cemil TUNÇ- A new result on the asymptotic stability of a stochastic delay differential equation of the second order 124
Abdullah Fatih ÖZCAN, İlhan İÇEN- Topological group-groupoids 125
Tufan ÖZDIN- The minus partial order on endomorphism rings 126
Seyed Zeynal PASHAEI, Necat GORENTAS- Topological group and small loop transfer space 127
Erhan PİŞKİN, Ruken AKSOY- Existence and nonexistence for the higher-order logarithmic Klein-Gordon equation 128
Erhan Pİ̧̧iñ, Erkan SANCAR- Existence and decay for the logarithmic Lame system 129
Asghar RAHIMI, Bayaz DARABY- Multipliers of frames and woven frames in Hilbert spaces1 130
Mehdi RASHIDI-KOUCHI - On controlled frame multipliers in Hilbert spaces 131
Mehdi RASHIDI-KOUCHI, Maryam MOHAMMADREZAEE, Akbar NAZARI - Woven continuouse g-fusion frames in Hilbert spaces 132
Kelthoum Lina REDOUANE, Nouria ARAR - Cubic b-spline collocation technique for time-dependent problems with small perturbation parameter 133
Mehmet Giyas SAKAR - A new method for variable order fractional Volterra-Fredholm integro-differential equations 134
Mine SARIGÜL, Ercan TUNÇ - New oscillation criteria for odd-order neutral differential equations with distributed deviating arguments 135
Nil ŞAHIN - Conjectures of Rossi and Sally on the monotonocity of the Hilbert functions 136
Nilay ŞAHİN BAYRAM - Some Korovkin theorems for linear operators via power series method 137
Pınar ŞAŞMAZ, Murad ÖZKOÇ, Santanu ACHARJEE - On ωe^{*}-continuous functions 138
Merve ŞENGÜN, Cemil TUNÇ - On the Hyers-Ulam stability of nonlinear Volterra integro- differential equation with the multiple constant delays 139
Sinem ŞİMŞEK - A block conjugate gradient method for linear positive definite quaternion matrix equations 140
Şerife TEKİN, Aynur KESKİN KAYMAKCI - On Maki's Λ-sets via strong β - I-open set 141
Hayri TOPAL - Weighted composition operators on weighted spaces of holomorphic func- tions on Banach spaces 142
Ali Hakan TOR - Benchmarking for nonsmooth convex optimization methods 143
Osman TUNÇ - A note on qualitative behaviors of solutions of integro-differential equations 144
Cemil TUNÇ, Osman TUNÇ - Enhanced new qualitative criteria to delay fractional integro- differential equations with Caputo derivative 145
Ergül TÜRKMEN, Yılmaz Mehmet DEMİRCİ - Wsa-coinjective modules 146
Cennet TÜRKOGLU, Abdulcabbar SÖNMEZ - Some new sequence spaces derived by the composition of weighted mean and quadruple band matrix 147
Gopal YADAV, Rajesh Kumar SHARMA, Gendlal PRAJAPATI - Complex valued con- trolled fuzzy metric spaces and some common fixed point results 148
Tülay YAGMUR - On bicomplex numbers with coefficients from higher order Fibonacci numbers 149
Ferit YALAZ, Aynur KESKIN KAYMAKCI - New continuity types via local closure function150
Ruhi YALÇIN, Handan KÖSE - A new characterization of reflexive rings and their appli- cations 151
Reha YAPALI, Erdal KORKMAZ - On statistical convergence for triple sequences on L - fuzzy normed space 152
Cumali YAŞAR, Ahmet Buğra YAŞAR- Quantum computer-resistant digital signature gen- eration using complex numbers 153
Ramazan YAZGAN - Analysis of global exponential stability and pseudo almost periodic solution of a class of chaotic neural networks on time scales 154
Nurullah YILMAZ, Hatice OGUT - An exact penalty function approach for inequality constrained optimization problems based on a new smoothing technique 155
Melis Berçin YILMAZ, Zülfükar SAYGI - Roman type domination numbers of Fibonacci cubes 156
Ceyda YILMAZ LUZUM, Şenay BAYDAŞ, Bülent KARAKAŞ - Bezier curves belonging to some surfaces 157
Abdullah YİĞİT - Improved new results on the asymptotic admissibility of nonlinear sin- gular systems with multiple delays 158
Halil İbrahim YOLDAŞ - On the geometry of Ricci solitons 159

Scientific programme in details

June 22, 2022
Room 1 (Invited speakers) Chair: Cemil TUNÇ
09:00-09:15 Opening Ceremony
09:15-10:00 Adil BAGIROV
Nonsmooth DC optimization: Methods and applications
10:00-10:45 Choonkil PARK
Almost hom-Poisson algebras and homomorphisms and derivations on hom-Poisson algebras
10:45-11:00 Coffee Break
11:00-11:45 Ayman BADAWI
N-zero-divisor graph of a commutative semigroup
11:45-12:30 Ahmed Mohamed EL-SAYED
Stochastic fractional calculus operators: Basic concepts and applications
12:30-13:40 Lunch Break
Room 1 Chair: Ramazan YAZGAN
13:40-14:00 Zeynep KAYAR, Billur KAYMAKÇALAN
Novel delta and nabla Pachpatte type inequalities via convexity
14:00-14:20 Billur KAYMAKÇALAN, Zeynep KAYAR
Diamond-alpha Pachpatte type dynamic inequalities
14:20-14:40 Ceyda DEMİREL
The nabla z-transform
14:40-15:00 Sare Buse ERSU
On stability of linear difference systems
15:00-15:10 Coffee Break
Room 1 Chair: Cemil TUNÇ
15:10-15:30 Merve ŞENGÜN, Cemil TUNÇ
On the Hyers-Ulam stability of nonlinear Volterra integro-differential equation with the multiple constant delays
15:30-15:50 Melek GÖZEN
New qualitative criteria to certain vector differential equations of second order
15:50-16:10 Ramazan YAZGAN
Analysis of global exponential stability and pseudo almost periodic solution of a class of chaotic neural networks on time scales
16:10-16:30 İrem ARIK, Cemil TUNÇ
On the existence of positive periodic solutions of nonlinear neutral differential equations
16:30-16:45 Coffee Break
Room 1 (Invited speakers) Chair: Cemil TUNÇ
16:45-17:30 Hans-Peter SCHRÖCKER
Nested bases for rational PH-curves
17:30-18:15 Sandra PINELAS
Oscillation criteria for second order neutral delay differential equations
18:15-19:00 Martin BOHNER
Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear and nonlinear dynamic equations

June 22, 2022

Room 2 Chair: Osman TUNÇ
13:40-14:00 Cemil TUNÇ, Osman TUNÇ
Enhanced new qualitative criteria to delay fractional integro-differential equations with Caputo derivative
14:00-14:20 Kasım MANSIZ, Cemil TUNÇ
On the behavior of solutions of Riemann-Liouville fractional nonlinear equation with multiple variable delays
14:20-14:40 Zozan OKTAN, Cemil TUNÇ
A new result on the asymptotic stability of a stochastic delay differential equation of the second order
14:40-15:00 Harun BİÇER
Mahgoub transform method in stability research
15:00-15:10 Coffee Break
Room 2 Chair: İsmail Hakkı DENİZLER
15:10-15:30 Ferit YALAZ, Aynur KESKİN KAYMAKCI
New continuity types via local closure function
15:30-15:50 Şerife TEKİN, Aynur KESKİN KAYMAKCI
On Maki's Λ-sets via strong β-I-open set
15:50-16:10 Pınar ŞAŞMAZ, Murad ÖZKOÇ, Santanu ACHARJEE
On ωe^{*}-continuous functions
16:10-16:30 Hülya DURU, Serkan İLTER, Aygül BİLGİN
A first countable Hausdorff topology induced by a quasi-uniformity
16:30-16:45 Coffee Break

June 22, 2022

Room 3 Chair: Nagehan AKGÜN
13:40-14:00 Sinem ŞİMŞEK
A block conjugate gradient method for linear positive definite quaternion matrix equations
14:00-14:20 Ali Hakan TOR
Benchmarking for nonsmooth convex optimization methods
14:20-14:40 Baransel GÜNEŞ, Musa ÇAKIR
A fully discrete scheme for singularly perturbed semilinear integro-differential equations with two integral boundary conditions
14:40-15:00 Seda İĞRET ARAZ
Applications of the piecewise derivative to real-world problems
15:00-15:10 Coffee Break
Room 3 Chair: Ali Hakan TOR
15:10-15:30 Cansu EVCİN
Optimal control on the MHD mixed convection flow with transverse magnetic field
15:30-15:50 Nagehan AKGÜN
The use of dual reciprocity boundary element method for solving the coupled nonlinear Sine-Gordon equations
15:50-16:10 Kelthoum Lina REDOUANE, Nouria ARAR
Cubic b-spline collocation technique for time-dependent problems with small perturbation parameter
16:10-16:30 Ali MUSALİ, Çağrı SAĞLAM, Mustafa Kerem YÜKSEL
Hopf bifurcations in a model of epidemic awareness
16:30-16:45 Coffee Break

June 22, 2022

Room 4 Chair: Murat LUZUM
13:40-14:00 Zübeyir ÇINKIR
Explicit and recursive formulas for Kirchhoff index of graphs via integer sequences such as generalized Fibonacci numbers
14:00-14:20 Mehmet Şerif ALDEMİR, Süleyman EDİZ, Murat CANCAN
On the stratified domination number of generalized Petersen graphs
14:20-14:40 Gülistan KAYA GÖK
Different bounds for degree Kirchhoff index
14:40-15:00 Ilham HASSI, Mohamed Amine BOUTICHE
The detour index of graph products
15:00-15:10 Coffee Break
Room 4 Chair: Zeynep KAYAR
15:10-15:30 Nilay ŞAHİN BAYRAM
Some Korovkin theorems for linear operators via Power Series Method
15:30-15:50 Cennet TÜRKOĞLU, Abdulcabbar SÖNMEZ
Some new sequence spaces derived by the composition of weighted mean and quadruple band matrix
15:50-16:10 Nihal DEMİR, Hafize GÜMÜŞ
Lacunary statistical convergence of multiset sequences
16:10-16:30 Hafize GÜMÜŞ
A generalized form of ρ-statistical convergence of interval numbers
16:30-16:45 Coffee Break

June 22, 2022

Room 5 Chair: Yılmaz Mehmet DEMİRCI

13:40-14:00 Yılmaz Mehmet DEMİRCİ
Crumbling modules as injectivity domains
14:00-14:20 \(\begin{array}{ll}Ergül TÜRKMEN, Yılmaz Mehmet DEMİRCİ
Wsa-coinjective modules\end{array}\)
Wsa-coinjective modules

14:20-14:40 Ruhi YALÇIN, Handan KÖSE
A new characterization of reflexive rings and their applications
14:40-15:00 Tufan ÖZDİN
The minus partial order on endomorphism rings
15:00-15:10 Coffee Break

Room 5 Chair: Çisem GÜNEŞ AKTAŞ

15:10-15:30 Murat LUZUM, İsmail Hakkı DENİZLER On semicommutative rings in term of nilpotent elements

15:30-15:50 Ömer KÜSMÜŞ
A note on nilpotent units in commutative group rings of direct product groups
15:50-16:10 Figen ERYILMAZ
Cofinitely $s s$-lifting modules
16:10-16:30 Burcu NİŞANCI TÜRKMEN, Yılmaz Mehmet DEMİRCİ
Injective modules are ss-lifting in R-mod
16:30-16:45 Coffee Break
Room 6 Chair: İsmail Hakkı DENİZLER

13:40-14:00 Mehmet GÜRDAL, Hamdullah BAŞARAN
 Advanced renements of Berezin number inequalities

14:00-14:20 Beyaz Başak ESKİŞEHİRLİ
An operator-theoretic setting of singly-generated invariant subspaces in the polydisc
14:20-14:40 Hayri TOPAL
Weighted composition operators on weighted spaces of holomorphic functions on Banach spaces
14:40-15:00 Mehdi RASHIDI-KOUCHI
On controlled frame multipliers in Hilbert spaces
15:00-15:10 Coffee Break
Room 6 Chair: Osman TUNÇ
15:10-15:30 Lydia BOUCHAL, Karima MEBARKI
Multiple fixed point results for sum of operators and application
15:30-15:50 Jasbir Singh MANHAS
Boundedness of sum of generalized weighted composition operators between weighted spaces of analytic functions
15:50-16:10 Gopal YADAV, Rajesh Kumar SHARMA, Gendlal PRAJAPATI
Complex valued controlled fuzzy metric spaces and some common fixed point results
16:10-16:30 Karim HEDAYATIAN, Mohammad NAMEGOSHAYFARD On commutant hypercyclicity and commutant transitivity of some operators
16:30-16:45 Coffee Break

	June 22, 2022 Wednesday					
Time						
Chair	CEMİL TUNÇ					
09:00-09:15	Opening Ceremony	Opening Ceremony				
09:15-10:00	ADIL BAGIROV	Invited Speaker				
10:00-10:45	CHOONKIL PARK	Invited Speaker				
10:45-11:00	Coffee Break					
Chair	CEMİL TUNÇ					
11:00-11:45	AYMAN BADAWI	Invited Speaker				
11:45-12:30	AHMED MOHAMED ELSAYED	Invited Speaker				
12:30-13:40	Lunch Break					
Time	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6
Chair	RAMAZAN YAZGAN	OSMAN TUNÇ	NAGEHAN AKGÜN	MURAT LUZUM	YILMAZ DEMIRCI	İSMAİL HAKKI
13:40-14:00	ZEYNEP KAYAR	CEMIL TUNÇ	SİNEM ŞiMŞEK	ZÜBEYİR ÇINKIR	YILMAZ DEMIRCI	HAMDULLAH BAŞARAN
14:00-14:20	BİLLUR KAYMAKÇALAN	KASIM MANSIZ	ALİ HAKAN TOR	M. ŞERIF ALDEMIR	ERGUL TURKMEN	BEYAZ BAŞAK ESKIŞEHIRLİ
14:20-14:40	CEYDA DEMIREL	ZOZAN OKTAN	BARANSEL GÜNEŞ	GULİSTAN KAYA GÖK	RUHİ YALÇIN	HAYRİ TOPAL
14:40-15:00	SARE BUSE ERSU	HARUN BIÇER	SEDA İGRET ARAZ	İLHAM HASSI	TUFAN ÖZDİN	MEHDI RASHIDI- KOUCHI
15:00-15:10				Coffee Break		
Time	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6
Chair	CEMİL TUNÇ	İSMAILL HAKKI DENİZLER	ALİ HAKAN TOR	ZEYNEP KAYAR	ÇİSEM GÜNES AKTAŞ	OSMAN TUNÇ
15:10-15:30	MERVE ŞENGÜN	FERIT YALAZ	CANSU EVCIN	NİLAY ŞAHİN BAYRAM	MURAT LUZUM	LYDIA BOUCHAL
15:30-15:50	MELEK GOZEN	ŞERIFE TEKIN	NAGEHAN AKGÜN	CENNET TÜRKOGLU	ÖMER KÜSMÜŞ	$\begin{array}{ll}\text { JASBIR } & \text { SINGH } \\ \text { HAS }\end{array}$
15:50-16:10	RAMAZAN YAZGAN	PINAR ŞAŞMAZ	KELTHOUM LINA REDOUANE	NIHAL DEMIR	FIGEN ERYILMAZ	GOPAL YADAV
16:10-16:30	IREM ARIK	AYGÜL BILGGIN	MUSTAFA KEREM YÜKSEL	HAFİE GÜMÜŞ	BURCU NíşANCI TÜRKMEN	$\begin{aligned} & \text { MOHAMMAD } \\ & \text { NAMEGOSHAYFARD } \end{aligned}$
16:30-16:45				Coffee Break		
Chair	CEMİL TUNÇ					
16:45-17:30	HANS-PETER SCHRÖCKER			Invited Speaker		
17:30-18:15	SANDRA PINELAS			Invited Speaker		
18:15-19:00	MARTIN BOHNER			Invited Speaker		

June 23, 2022

Room 1 (Invited speakers) Chair: Cemil TUNÇ

08:45-09:30 Soon-Mo JUNG
 Generalized linear span and its applications

09:30-10:15 Alireza KHALILI GOLMANKHANEH
Fractal calculus needs to include fractal measure
10:15-10:30 Coffee Break
10:30-11:15 Alessandro PAOLUCCI, Cristina PIGNOTTI
Exponential decay for semilinear damped wave equations with delay feedback
11:15-12:00 Vitalii I. SLYNKO
Construction of a Lyapunov function for 1-D linear hyperbolic 2×2 systems
12:00-12:45 Salvador LÓPEZ-ALFONSO, Manuel LÓPEZ-PELLICER, Santiago MOLL-LÓPEZ On Nikodým, Grothendieck, Vitali-Hahn-Saks and Valdivia measure theorems
12:45-14:00 Lunch Break
Room 1 Chair: Osman TUNÇ
$\begin{array}{ll}\text { 14:00-14:20 } & \text { Muzaffer ATES, Rodi AYID ALI } \\ & \text { Lyapunov stability analysis of electrical power systems }\end{array}$
14:20-14:40 Amel HIOUAL, Adel OUANNAS, Taki Eddine OUSSAEIF, Zineb LAOUAR
On fractional variable-order neural networks based on the Caputo derivative
14:40-15:00 Betül GÜDÜK İBRAHİMOĞLU, Mustafa Taylan ŞENGÜL
On the analysis of a model with Holling type-III functional response consisting of super predator, intermediate predator and prey
15:00-15:20 Muzaffer ATEŞ
Boundedness of solutions to a nonlinear differential equation of fourth order
15:20-15:30 Coffee Break
Room 1 Chair: Ramazan YAZGAN

15:30-15:50 Osman TUNÇ

A note on qualitative behaviors of solutions of integro-differential equations
15:50-16:10 Serkan İLTER, Hülya DURU, Seyit KOCA, Havva Nur ÖZTÜRK
A \mathbf{C}^{1} approximation on differential inclusions
16:10-16:30 Şahap ÇETİN, Yalçın YILMAZ, Coşkun YAKAR
Quasilinearization method for a generalized initial-value problem on the time scale
16:30-16:50 Abdullah YİĞİT
Improved new results on the asymptotic admissibility of nonlinear singular systems with multiple delays
16:50-17:10 Zineb LAOUAR, Nouria ARAR, Amel HIOUAL
On the numerical solution of the fractional integro-differential equation using shifted Chebyshev polynomials of the third kind
17:10-17:20 Coffee Break

Room 1 Chair: Osman TUNÇ
17:20-17:40 Oktay Sh. MUKHTAROV, Merve YUCEL, Kadriye AYDEMIR
Approximate solution of the transmission problem via transform method
17:40-18:00 Sibel DOĞRU AKGÖL
New oscillation/ nonoscillation criteria for impulsive differential equations with discontinuous solutions
18:00-18:20 Mine SARIGÜL, Ercan TUNÇ
New oscillation criteria for odd-order neutral differential equations with distributed deviating arguments
18:20-18:40 Ilhame AMIRALI, Hülya ACAR
Stability analysis for high-order Volterra delay integro-differential equation
18:40-19:00 Sultan ERDUR, Cemil TUNÇ
Stability, boundedness and existence of periodic solutions of some fourth order nonlinear differential equations with multiple delays
19:00-19:15 Closing Ceremony

June 23, 2022

Room 2 Chair: Hayri TOPAL
14:00-14:20 Murat BODUR, Prashantkumar PATEL Integral modication of Lupaş type operators
14:20-14:40 Kerem GEZER, Mine MENEKŞE YILMAZ
The Voronovskaja type theorem for a class of Kantorovich type operators associated with the Charlier polynomials I
14:40-15:00 Özge DALMANOĞLU
Approximation properties of a generalization of Szász-Beta operators
15:00-15:20 Sanda MICULA
A superconvergent collocation method for two-dimensional Hammerstein integral equations
15:20-15:30 Coffee Break
Room 2 Chair: Hayri TOPAL
15:30-15:50 Erhan PİŞKíN, Ruken AKSOY
Existence and nonexistence for the higher-order logarithmic Klein-Gordon equation
15:50-16:10 Erhan PIŞKIN, Erkan SANCAR
Existence and decay for the logarithmic Lame system
16:10-16:30 Yavuz DİNÇ, Erhan PİŞKíN, Cemil TUNÇ
Upper bounds for the blow up time for the Kirchhoff-type equation
16:30-16:50 Zineb ARAB, Cemil TUNÇ
On some stochastic time-fractional integral equations
16:50-17:10 Gökçen ÇEKİÇ
Bifurcation scheme of multi-layer flows on various wave velocities
17:10-17:20 Coffee Break
Room 2 Chair: Zeynep KAYAR
17:20-17:40 Okan ARSLAN, Ahmet GENÇ
On the source of semi-primeness of Γ-rings
17:40-18:00 Cahit DEDE
New infinite classes of Laplacian borderenergetic graphs
18:00-18:20 Melis BERÇİN YILMAZ, Zülfükar SAYGI
Roman type domination numbers of Fibonacci cubes
18:20-18:40 İdris ÇíFTCİ, Süleyman EDİZ
On k-total distance degrees and related indices of graphs
18:40-19:00 İdris ÇİFTCİ
QSPR investigation of leap Randić index of octanes

June 23, 2022

Room 3 Chair: Ömer KÜSMÜŞ
14:00-14:20 Ekin DELİKTAŞ-ÖZDEMİR, Ayse PEKER DOBIE
Some comparisons between the effects of planar and corrugated interfaces of a layer sandwiched between two half spaces on SH wave propagation
14:20-14:40 Imran ALI, Javid IQBAL
Second order partial differential evolutionary equations driven by variational-like inequalities
14:40-15:00 Rabia GÜLERYÜZ, Burak UYAR
Introduction to Grey models
15:00-15:20
15:20-15:30 Coffee Break
Room 3 Chair: Çisem GÜNES AKTAŞ
15:30-15:50 Mustafa Kutay KUTLU, Engin MERMUT
Roth's theorem on arithmetic progressions
15:50-16:10 Tülay YAĞMUR
On bicomplex numbers with coefficients from higher order Fibonacci numbers
16:10-16:30 Merve ARTIRAN, Zülfükar SAYGI
Roman type domination parameters of Lucas cubes
16:30-16:50 Garwita AGRAWAL, Manjeet Singh TEETH, K. N. RAJESWARI
Properties of generalized Fibonacci and Lucas polynomials
16:50-17:10 Reha YAPALI, Erdal KORKMAZ
On statistical convergence for triple sequences on L-fuzzy normed space
17:10-17:20 Coffee Break
Room 3 Chair: Ömer KÜSMÜŞ
17:20-17:40 Kübra GÜL
On the Perrin hybrid quaternions
17:40-18:00 Ilker AKKUS, Betül ERDOĞAN
Cholesky and LU algorithms of Lucas type matrices
18:00-18:20 Ilker AKKUS, Şafak YENİAYDIN
Spectral properties of some matrices with binomial coefficients
18:20-18:40 Ghania GUETTAI, Mourad RAHMANI
A new class of m-(p,q)-Bernoulli polynomials
18:40-19:00 N. Rosa AIT-AMRANE, Hacene BELBACHIR, Elif TAN
A study on r-Fibonacci and r-Lucas hybrid polynomials

June 23, 2022

Room 4 Chair: Murat LUZUM

14:00-14:20
14:20-14:40
14:40-15:00 Şehmus FINDIK
On automorphisms of symmetric polynomials of noncommutative algebras
15:00-15:20
15:20-15:30 Coffee Break
Room 4 Chair: Murat LUZUM
15:30-15:50 Merve KARA, Ömer AKTAŞ
On solutions of three-dimensional system of difference equations
15:50-16:10 Ayfer ÇETE, Yasin YAZLIK
On a solvable system of difference equations with constant coefficients
16:10-16:30 Neriman KARTAL
Stability and bifurcation analysis of a COVID-19 mathematical model on Erdös Rényi network
16:30-16:50 Nimet COŞKUN
Spectral singularities of the Sturm-Liouville equations with a nonstandard density function
16:50-17:10 Berna ARSLAN
Stability of Jordan k-derivations on Γ-Banach algebras
17:10-17:20 Coffee Break
Room 4 Chair: Nagehan AKGÜN
17:20-17:40 Çisem GÜNEŞ AKTAŞ
Arithmetical reduction of classication problems of singular K3- surfaces
17:40-18:00 Gonca KIZILASLAN
Factorization of a statistical matrix
18:00-18:20 Nil ŞAHİN
Conjectures of Rossi and Sally on the monotonocity of the Hilbert functions
18:20-18:40 İsmail Hakkı DENİZLER
Artinian analogues of some Noetherian modules over complete semi-local commutative Noetherian rings
18:40-19:00 Sibel CANSU, Erol YILMAZ, Uğur USTAOĞLU
Divided domains satisfy the weakly radical formula

June 23, 2022

Room 5 Chair: Nagehan AKGÜN
14:00-14:20 Halil İbrahim YOLDAŞ
On the geometry of Ricci solitons
14:20-14:40 Zeynep CANA note on some spaces induced by convex polyhedra and their isometry groups
14:40-15:00 Akram CHEHRAZI
An overview of twistor theory
15:00-15:20 Ceyda YILMAZ LUZUM, Şenay BAYDŞ, Bülent KARAKAŞ
Bezier curves belonging to some surfaces
15:20-15:30 Coffee Break
Room 5 Chair: Ali Hakan TOR
15:30-15:50 Mehdi RASHIDI-KOUCHI, Maryam MOHAMMADREZAEE, Akbar NAZARI
Woven continuouse g-fusion frames in Hilbert spaces
15:50-16:10 Asghar RAHIMI, Bayaz DARABY
Multipliers of frames and woven frames in Hilbert spaces
16:10-16:30 Cumali YAŞAR, Ahmet Buğra YAŞAR
Quantum computer-resistant digital signature generation using complex numbers
16:30-16:50 Mustafa COŞKUNEigen gaps to decide on graph convolutional network architecture
16:50-17:10
17:10-17:20 Coffee Break
Room 5 Chair: Ramazan YAZGAN
17:20-17:40 Pakize ÇETİN, Okan KUZUExamination of preservice mathematics teachers' written expression skills for geometricobjects: Student diaries
17:40-18:00 Nurten KILIÇ
On oscillation of solutions of advanced differential equations
18:00-18:20 Mehmet Giyas SAKARA new method for variable order fractional Volterra-Fredholm integro-differentialequations
18:20-18:40 Seyed Zeynal PASHAEI, Necat GORENTAS
Topological group and small loop transfer space

June 23, 2022

Room 6 Chair: Çisem GÜNEŞ AKTAŞ
14:00-14:20 İlhan İÇEN, Abdullah Fatih ÖZCAN
Every gobal action denes a local equivalence relation
14:20-14:40 Abdullah Fatih ÖZCAN, İlhan İÇEN
Topological group-groupoids
14:40-15:00 Ramazan EKMEKÇİ
Almost continuity and almost compactness in graded ditopological texture spaces
15:00-15:20 Enes ATA
M-extension of Lauricella hypergeometric functions and their integral representations
15:20-15:30 Coffee Break
Room 6 Chair: Ömer KÜSMÜŞ
15:30-15:50 Elif ERÇELİK, Mustafa NADAR
Nonnegative bias reduction methods for density estimation using scaled inverse chi-squared kernel estimator
15:50-16:10 Nurullah YILMAZ, Hatice OGUT
An exact penalty function approach for inequality constrained optimization problems based on a new smoothing technique
16:10-16:30 Ali HAMİDOĞLU
On designing discrete-time games from continuous-time models
16:30-16:50 Boutheina FELLAHI, Bachir MERIKHI
A logarithmic barrier interior point method for linear programming
16:50-17:10
17:10-17:20 Coffee Break

	June 23, 2022 Thursday					
Time						
Chair	CEMİL TUNÇSOON-MO JUNG					
08:45-09:30		Invited Speaker				
09:30-10:15	ALIREZA KHALILI GOLMANKHANEH	Invited Speaker				
10:15-10:30	Coffee Break					
Chair	CEMİL TUNÇ					
10:30-11:15	CRISTINA PIGNOTTI	Invited Speaker				
11:15-12:00	VITALII I. SLYNKO	Invited Speaker				
12:00-12:45	MANUEL LOPEZ PELLICER	Invited Speaker				
12:45-14:00	Lunch Break					
Time	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6
Chair	OSMAN TUNÇ	HAYRİ TOPAL	ÖMER KÜSMÜŞ	MURAT LUZUM	NAGEHAN AKGÜN	ÇİSEM GÜNEŞ AKTAŞ
14:00-14:20	RODI AYID ALI	MURAT BODUR	EKİN DELİKTAŞ- ÖZDEMIR		HALİL YOLDAŞ \quad IBRAHIM	İLHAN İÇEN
14:20-14:40	AMEL HIOUAL	KEREM GEZER	IMRAN ALI		ZEYNEP CAN	ABDULLAH ÖZCAN
14:40-15:00		ÖZGE DALMANOĞLU	RABİA GÜLERYÜZ	ŞEHMUS FINDIK	AKRAM CHEHRAZI	RAMAZAN EKMEKÇI
15:00-15:20	MUZAFFER ATEŞ	SANDA MICULA			CEYDA YILMAZ LUZUM	ENES ATA
15:20-15:30				Coffee Break		
Time	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6
Chair	RAMAZAN YAZGAN	HAYRİ TOPAL	ÇİSEM AKTAŞ	MURAT LUZUM	ALI HAKAN TOR	ÖMER KÜSMÜŞ
15:30-15:50	OSMAN TUNÇ	RUKEN AKSOY	MUSTAFA KUTAY KUTLU	ÖMER AKTAŞ	MARYAM MOHAM- MADREZAEE	ELIF ERÇELIK
15:50-16:10	SEYİT KOCA	ERKAN SANCAR	TÜLAY YAĞMUR	AYFER ÇETE	ASGHAR RAHIMI	NURULLAH YILMAZ
16:10-16:30	ŞAHAP ÇETIN	YAVUZ DİNÇ	MERVE ARTIRAN	NERİMAN KARTAL	AHMET BUĞRA YAŞAR	ALİ HAMİDOĞLU
16:30-16:50	ABDULLAH YİĞİT	ZINEB ARAB	GARWITA AGRAWAL	NİMET COŞKUN	MUSTAFA COŞKUN	BOUTHEINA FELLAHI
16:50-17:15	ZINEB LAOUAR	GÖKÇEN ÇEKİÇ	REHA YAPALI	BERNA ARSLAN		
17:10-17:20				Coffee Break		
Time	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6
Chair	OSMAN TUNÇ	ZEYNEP KAYAR	ÖMER KÜSMÜŞ	NAGEHAN AKGÜN	RAMAZAN YAZGAN	
17:20-17:40	MERVE YÜCEL	OKAN ARSLAN	KÜBRA GÜL	ÇíSEM GÜNEŞ AKTAŞ	PAKİZE ÇETİN	
17:40-18:00	SİBEL DOGRU AKGÖL	CAHIT DEDE	BETÜL ERDOĞAN	GONCA KIZILASLAN	NURTEN KILIÇ	
18:00-18:20	MİNE SARIGÜL	MELİS BERÇİN YILMAZ	ŞAFAK YENİAYDIN	NİL ŞAHİN	MEHMET GİYAS SAKAR	
18:20-18:40	HÜLYA ACAR	SÜLEYMAN EDİZ	GHANIA GUETTAI	ISMAIL \quad HAKKI DENIZLER	SEYED ZEYNAL PASHAEI	
18:40-19:00	SULTAN ERDUR	İDRİS ÇIFTCİ	N. ROSA AIT-AMRANE	SİBEL CANSU		
19:00-19:15	Closing Ceremony			Closing Ceremony		

Abstracts of invited speakers

N-zero-divisor graph of a commutative semigroup

AYMAN BADAWI
The American University of Sharjah, Sharjah, United Arab Emirates
email: abadawi@aus.edu

Let S be a (multiplicative) commutative semigroup with $0, Z(S)$ the set of zero-divisors of S, and n a positive integer. The classical zero-divisor graph of S is the (simple) graph $\Gamma(S)$ with vertices $Z(S)^{*}=Z(S) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. In this talk, we introduce and study the n-zero-divisor graph of S as the (simple) graph $\Gamma_{n}(S)$ with vertices $Z_{n}(S)^{*}=\left\{x^{n} \mid x \in Z(S)\right\} \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. Thus each $\Gamma_{n}(S)$ is an induced subgraph of $\Gamma(S)=\Gamma_{1}(S)$. We pay particular attention to $\operatorname{diam}\left(\Gamma_{n}(S)\right.$), $\operatorname{gr}\left(\Gamma_{n}(S)\right)$, and the case when S is a commutative ring with $1 \neq 0$.

MSC 2010: 13A70, 05C25, 05C99, 13A15, 13B99

Keywords: Annihilator graph, commutative ring with identity, commutative semigroup with zero, congruence-based zero-divisor graphextended zero-divisor graph

References

[1] D. F. Anderson, T. Asir, A. Badawi, and T. Tamizh Chelvam, Graphs from Rings. Springer, 2021.
[2] D. F. Anderson and A. Badawi, N-zero-divisor graph of a commutative semigroup, submitted, 2022.
[3] D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring. Comm. Algebra 36 (2008), 3073-3092.
[4] D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings. Algebra Colloq. 19(SPL. ISS. 1) (2012), 1017-1040.
[5] D. F. Anderson and A. Badawi, The zero-divisor graph of a commutative semigroup: A survey. In: Groups, Modules, and Model Theory-Surveys and Recent Developments, Springer, Cham, (2017), 23-39.
[6] D. F. Anderson and G. McClurkin, Generalization of the zero-divisor graph. Int. Electron. J. Algebra 27 (2020), 237-262.
[7] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210 (2007), 543-550.
[8] A. Badawi, On abelian π-regular rings. Comm. Algebra 25 (1997), 1009-1021.
[9] A. Badawi, A. Y. Chin, and H. V. Chen, On rings with near idempotent elements. International J. of Pure and Applied Math. 1 (2002), 255-262.
[10] D. Bennis, J. Mikram, and F. Taraza, On the extended zero-divisor graph of commutative rings. Turkish J. Math. 40 (2016), 376-388.
[11] F. DeMeyer and L. DeMeyer, Zero-divisor graphs of semigroups. J. Algebra 283 (2005), 190-198.
[12] F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup. Semigroup Forum 65 (2002), 206-214.
[13] S. B. Mulay, Rings having zero-divisor graphs of small diameter or large girth. Bull. Austral. Math. Soc. 72 (2005), 481-490.
[14] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors. Comm. Algebra 39 (2011), 2338-2348.

Nonsmooth DC optimization: Methods and applications

ADIL BAGİROV
Federation University Australia, Ballarat, Victoria, Australia
email: a.bagirov@federation.edu.au

In this talk we consider unconstrained and constrained optimization problems where the objective and/or constraint functions are represented as a difference of two convex (DC) functions. We discuss two different approaches to design methods of nonsmooth DC optimization: an approach based on the extension of bundle methods of nonsmooth optimization and an approach based on the DCA (difference of convex algorithm). We present numerical results and discuss various applications of DC optimization in machine learning.

MSC 2010: 90C26, 65K05, 68 T 05
Keywords: Nonsmooth optimization, nonconvex optimization, DC functions, Machine learning

Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear and nonlinear dynamic equations

MARTIN BOHNER

Missouri S\&T, Rolla, MO, USA
email: bohner@mst.edu

We present several new sufficient conditions for Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear and nonlinear dynamic equations for functions defined on a time scale with values in a Banach space.

MSC 2010: 34N05, 39A30, 39A12
Keywords: Hyers-Ulam stability, linear dynamic equation, nonlinear dynamic equation

References

[1] M. A. Alghamdi, A. Aljehani, M. Bohner, and A. Hamza, Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear dynamic equations. Publ. Inst. Math. (Beograd) (N.S.) 109 (2021), no. 123, 83-93.
[2] M. A. Alghamdi, M. Alharbi, M. Bohner, and A. Hamza, Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order nonlinear dynamic equations. Qual. Theory. Dyn. Syst. 20 (2021), no. 2, Art. No. 45.

Stochastic fractional calculus operators: Basic concepts and applications

AHMED MOHAMED EL-SAYED
Alexandria University, Alexandria, Egypt
email: amasayed@alexu.edu.eg

In this talk, we give the basic concepts and definitions of the fractional-order integral and fractional order derivatives of the second order stochastic processes. The main properties of these operators will be given. Some problems of stochastic and random differential equations will be studied. The combination between the fractional order derivative and stochastic Ito-differential and integral will be studied in some coupled systems of nonlocal stochastic and random differential equations.

MSC 2010: 34A12, 34A30, 34D20
Keywords: Stochastic processes, stochastic fractional-order derivatives, stochastic fractional-order integrals

References

[1] A. M. A. El-Sayed, M. A. El-Tawil, M. S. M. Saif and F. M. Hafez, The mean square RiemannLiouville stochastic fractional derivative and stochastic fractional order differential equation. Math. Sci. Res. J. 9 (2005), 142-150.
[2] A. M. A. El-Sayed, On the stochastic fractional calculus operators. J. Fract. Calc. Appl. 9 (2015), 101-109.
[3] A. M. A. El-Sayed and H. A. Fouad, On a coupled system of random and stochastic nonlinear differential equations with coupled nonlocal random and stochastic nonlinear integral conditions. Mathematics 9 (2021), 2111.
[4] A. M. A. El-Sayed and H. A. Fouad, On a Coupled System of Stochastic Ito-Differential and the Arbitrary (Fractional) Order Differential Equations with Nonlocal Random and Stochastic Integral Conditions. Mathematics 9 (2021), 2571.
[5] A. M. A. El-Sayed and H. A. Fouad, On a Neutral Itô and Arbitrary (Fractional) Orders Stochastic Differential Equation with Nonlocal Condition. Fractal Fract. 5 (2021), 201.
[6] F. M. Hafez, A. M. A. El-Sayed, M. A. El-Tawil, On a stochastic fractional calculus. Fractional Calculus Appl. Anal. 4 (2001), 81-90.
[7] F. M. Hafez, The Fractional calculus for some stochastic processes. Stoch. Anal. Appl. 22 (2004), 507-523.

Generalized linear span and its applications

SOON-MO JUNG
Hongik University, Sejong, Republic of Korea
email: smjung@hongik.ac.kr

The notions of first-order and second-order generalized linear spans and index set are defined. Moreover, their properties are investigated and applied to the studies of extension of isometries. We develop the theory of extending the domain of local isometries to the generalized linear spans, where we call an isometry defined in a subset of a Hilbert space a local isometry.

MSC 2010: 46B04, 46C99
Keywords: isometry, extension of isometry, generalized linear span
Acknowledgement: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01049560).

References

[1] S.-M. Jung, Extension of isometries in real Hilbert spaces. In preparation.
[2] S.-M. Jung, The conjecture of Ulam on the invariance of measure on Hilbert cube. arXiv:1807.05624.
[3] P. Mankiewicz, On extension of isometries in normed linear spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronomy, Phys. 20 (1972), 367-371.

Fractal calculus needs to include fractal measure

ALIREZA KHALILI GOLMANKHANEH
Islamic Azad University, Urmia, Iran
email: alirezakhalili2002@yahoo.co.in

This paper presents fractal calculus which is based on the measure of fractals and ordinary calculus. We consider functions that are defined on the Cantor sets, then we show that ordinary calculus can not be used for that function because of two reasons. First, because the length measure used in the ordinary calculus is not suitable for fractals, for example, in the case of the Cantor set, the length is zero. Secondly, the Cantor set is totally discontinuous therefore the functions are not integrable. But we explain how fractal calculus is solving these two problems. More, Fractal Laplace equations and fractal random variables are presented $[1,2,3,4,5,6,7,8]$.

MSC 2010: 28A80, 28A20
Keywords: Fractal calculus, Cantor sets, fractal derivative, fractal Laplace equations, fractal random variables

References

[1] A. K. Golmankhaneh, Fractal Calculus and its Applications. World Scientific, 2022.
[2] A. Parvate, A. D. Gangal, Calculus on fractal subsets of real line-I: Formulation. Fractals 17 (2009), 53-81.
[3] A. Parvate, A. D. Gangal, Calculus on fractal subsets of real line-II: Conjugacy with ordinary calculus. Fractals 19 (2011), 271-290.
[4] A. K. Golmankhaneh, K. Welch, Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: A review. Modern Physics Letters A 36 (2021), no. 14, 2140002.
[5] A. K. Golmankhaneh, S. M. Nia, Laplace equations on the fractal cubes and Casimir effect. Eur. Phys. J. Spec. Top. (2021); https://doi.org/10.1140/epjs/s11734-021-00317-4.
[6] A. K. Golmankhaneh, C. Tunç, H Şevli, Hyers-Ulam stability on local fractal calculus and radioactive decay. Eur. Phys. J. Spec. Top. (2021); https://doi.org/10.1140.
[7] A. K. Golmankhaneh, Tsallis entropy on fractal sets. J. Taibah Univ. Sci. 15 (2021), 543-549.
[8] A. K. Golmankhaneh, A. Fernandez, Random Variables and Stable Distributions on Fractal Cantor Sets. Fractal Fract. 3 (2019), 1-13.

On Nikodým, Grothendieck, Vitali-Hahn-Saks and Valdivia measure theorems

SALVADOR LÓPEZ-ALFONSO ${ }^{1}$, MANUEL LÓPEZ-PELLICER ${ }^{2}$, SANTIAGO MOLL-LÓPEZ ${ }^{3}$
1,2,3 Universitat Politècnica de València, Valencia, Spain
emails: ${ }^{1}$ salloal@upv.es; ${ }^{2}$ mlopezpe@mat.upv.es; ${ }^{3}$ sanmollp@mat.upv.es

Let \mathcal{A} be an algebra of subsets of a set Ω and let $b a(\mathcal{A})$ the Banach space of real or complex bounded finitely additive measures defined on \mathcal{A} endowed with the variation norm, which is equivalent to the supremum norm.

A subset \mathcal{B} of \mathcal{A} has property (N) if each \mathcal{B}-poinwise bounded sequence ($\mu_{n}, n \in \mathbb{N}$) of $b a(\mathcal{A})$ is norm bounded in $b a(\mathcal{A})$, i.e., the sequence $\left(\mu_{n}, n \in \mathbb{N}\right)$ is uniformly bounded in \mathcal{A}. \mathcal{B} has property $(G)[(V H S)]$ if for each bounded sequence [if for each sequence] $\left(\mu_{n}, n \in \mathbb{N}\right)$ of $b a(\mathcal{A})$ the \mathcal{B}-poinwise convergence of ($\mu_{n}, n \in \mathbb{N}$) to $\mu \in b a(\mathcal{A})$ implies its weak convergence, i.e., $\lim _{n \rightarrow \infty} \varphi\left(\mu_{n}\right)=\varphi(\mu)$ for each linear continuous form φ defined in $b a(\mathcal{A})$.
\mathcal{B} has property $(s N)[(s G)$ or $(s V H S)]$ if every increasing covering $\left\{\mathcal{B}_{n}: n \in \mathbb{N}\right\}$ of \mathcal{B} contains a set \mathcal{B}_{p} with property $(N)[(G)$ or $(V H S)]$, and \mathcal{B} has property $(w N)[(w G)$ or $(w V H S)]$ if for every increasing web $\left\{\mathcal{B}_{n_{1} n_{2} \cdots n_{m}}: n_{i} \in \mathbb{N}, 1 \leq i \leq m, m \in \mathbb{N}\right\}$ of \mathcal{B} there exists sequence ($p_{n}, n \in \mathbb{N}$) of natural numbers such that for each natural number m the set $\mathcal{B}_{p_{1} p_{2} \ldots p_{m}}$ property $(N)[(G)$ or $(V H S)]$ for every $m \in \mathbb{N}$.

The classical theorems of Nikodým-Grothendieck, Valdivia, Grothendieck and Vitali-Hahn-Saks say, respectively, that every σ-algebra \mathcal{A} has properties $(N),(s N),(G)$ and $(V H S)$. The main objective of this conference is to expose our recent results that every σ-algebra \mathcal{A} has properties $(w N),(w G)$ and $(w V H S)$, improving the mentioned four theorems. Moreover applications of these new properties are considered as well as the characterization that a subset \mathcal{B} of an algebra \mathcal{A} has property $(w W H S)$ if and only if \mathcal{B} has property $(w N)$ and \mathcal{A} has property (G) and several open questions.

MSC 2010: 28A60, 46G10

Keywords: Algebra and σ-algebra of subsets, bounded finitely additive scalar measure, Nikodým property, Grothendieck property, Vitali-Hahn-Saks propertyy

References

[1] M. López-Pellicer, Webs and Bounded Finitely Additive Measures. J. Math. Anal. Appl. 210 (1997), 257-267.
[2] J. V. Ferrando, S. López-Alfonso and M. López-Pellicer, On Nikodým and Rainwater sets for $b a(R)$ and a Problem of M. Valdivia. Filomat 33 (2019), no. 8, 2409-2416.
[3] S. López-Alfonso, M. López-Pellicer, S. Moll-López, S. On Four Classical Measure Theorems. Mathematics 9, (2021), no. 5, Paper No. 526, 17 pp.

Exponential decay for semilinear damped wave equations with delay feedback

ALESSANDRO PAOLUCCI ${ }^{1}$, CRISTINA PIGNOTTI ${ }^{2}$
${ }^{1}$ Ortona, Italy
${ }^{2}$ University of L'Aquila, Italy

emails: ${ }^{1}$ alessandro.paolucci10@gmail.com; ${ }^{2}$ cristina.pignotti@univaq.it

We analyze a class of semilinear damped wave-type equations with a delay feedback with timevariable coefficient. By combining semigroup arguments, careful energy estimates, and an iterative approach we are able to prove, under suitable assumptions, a well-posedness result and an exponential decay estimate for solutions corresponding to small initial data.

MSC 2010: 93D15, 35L90, 5B35
Keywords: Semilinear wave equations, time delays, feedback stabilization, exponential stability

Almost hom-Poisson algebras and homomorphisms and derivations on hom-Poisson algebras

CHOONKIL PARK
Hanyang University, Seoul, Korea
email: baak@hanyang.ac.kr

We construct hom-Poisson algebra from almost hom-Poisson algebra by using the Hyers-Ulam stability method and prove the Hyers-Ulam stability of homomorphisms and derivations on homPoisson algebras by using the direct method and the fixed point method. We moreover investigate the properties of hom-Poisson algebras.

MSC 2010: 17A15, 17B63, 17B99
Keywords: Hom-Poisson algebra, almost hom-Poisson algebra

Oscillation criteria for second order neutral delay differential equations

SANDRA PINELAS

Academia Militar, Amadora, Portugal
email: sandra.pinelas@gmail.com

The authors present some sufficient conditions for the oscillation of second order neutral delay differential equation

$$
\left(a(t)\left(z^{\prime}(t)\right)^{\beta}\right)^{\prime}+q(t) x^{\gamma}(\sigma(t))=0, t \geq t_{0}>0
$$

where $z(t)=x(t)+p(t) x(\tau(t))$. The neutral differential equations find wide range of applications in certain high-tech fields, such as control theory, mechanical engineering, physics, population dynamics, economics, ... From these discussions, we can see that the investigation of oscillatory and asymptotic behavior of solutions of second order neutral delay differential equations is of great importance in both theory and applications.

MSC 2010: 34C10, 34K11
Keywords: Neutral differential equation, second order, oscillation

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Second Order Linear, HalfLinear, Superlinear and Sublinear Dynamic Equations. Kluwer, Dordrecht, 2002.
[2] L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory For Functional Differential Equations. Marcel Dekker, New York, 1995.
[3] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications. The Clarenden Press, Oxford, 1991.

Nested bases for rational PH-curves

HANS-PETER SCHRÖCKER

Leopold-Franzens Universitt, Innsbruck, Austria
email: hans-peter.schroecker@uibk.ac.at
This is joint work with Bahar Kalkan, Daniel Scharler and Zbyněk Šír.
A curve with rational parametric equations is called "Pythagorean hodograph" or "PH" if its normalized derivative vector is rational as well. PH-curves are useful in situations where not only a geometric point locus but also its time-dependent trajectory need to be modeled. Examples include motion control, animation, or path planning.

Polynomial PH-curves have been studied extensively for more than thirty years. There is an elegant direct approach for their computation by integration of certain vectorial quaternion polynomials. Rational PH-curves are usually computed as envelopes of their osculating planes. While this yields a closed formula for all rational PH-curves, it is difficult to control their degree as unexpected cancellations often occur. The reason for these cancellations is hidden in some convoluted polynomial algebra and is not yet fully understood.

We present an alternative method for computing rational and polynomial PH-curves. Given the curve's tangent indicatrix and its denominator polynomial, it requires solving a modestly sized system of linear equations. Rather surprisingly, it turns out that polynomial PH-curves are generic in this context and rational PH-curves occur only in special cases. With our approach, PH-curves of bounded degree naturally form an infinite sequence of nested vector spaces for which bases can be computed. This not only gives new insight into the structure of polynomial and rational PH-curves. It also suggested a very clear standardized representation via finite Laurent series and provides computational advantages for applications.

MSC 2010: 65D17

Keywords: Pythagorean-hodograph curves, rational and polynomial PH-curves, tangent indicatrix

Construction of a Lyapunov function for 1-D linear hyperbolic 2×2 systems

VITALII SLYNKO

Julius-Maximilians-Universität, Würzburg, Germany
email: vitalii.slynko@mathematik.uni-wuerzburg.de

Consider a linear not strictly hyperbolic 2×2 system

$$
\begin{align*}
& \partial_{t} x_{1}(z, t)=a(z) \partial_{z} x_{1}(z, t)+b_{11}(z) x_{1}(z, t)+b_{12}(z) x_{2}(z, t), \\
& \partial_{t} x_{2}(z, t)=a(z) \partial_{z} x_{2}(z, t)+b_{21}(z) x_{1}(z, t)+b_{22}(z) x_{2}(z, t) \tag{1}
\end{align*}
$$

with the boundary conditions

$$
\begin{equation*}
\binom{x_{1}(\ell, t)}{x_{2}(\ell, t)}=\Lambda\binom{x_{1}(0, t)}{x_{2}(0, t)} . \tag{2}
\end{equation*}
$$

For the system (1)-(2), we consider the Cauchy problem with initial conditions $\left(x_{1}(z, 0), x_{2}(z, 0)\right)=$ $\left(x_{10}(z), x_{20}(z)\right)$. We assume, that $a \in C^{1}([0, \ell], \mathbb{R}), b_{i j} \in C^{1}([0, \ell], \mathbb{R}), i, j=1,2, i \neq j, a(z)>0$ for all $z \in[0, \ell]$, and $\Lambda=\left(\lambda_{i j}\right)_{i, j=1,2}$ is a constant matrix.

A Lyapunov function of the following structure

$$
V\left(x_{1}, x_{2}\right)=\int_{0}^{\ell}\left(q_{1}(z) x_{1}^{2}(z)+q_{2}(z) x_{2}^{2}(z)\right) d z, \quad i, j=1,2, \quad i \neq j,
$$

where $q_{i} \in C^{1}\left([0, \ell], \mathbb{R}_{>0}\right)$ is called the diagonal Lyapunov function [1]. We establish necessary conditions for the existence of the diagonal Lyapunov function.

Theorem 1 Let for the linear system (1)-(2) there exists the diagonal Lyapunov function, then the following inequalities hold

$$
\begin{array}{r}
\left|\lambda_{11}\right|<\exp \left(-\int_{0}^{\ell} \frac{b_{11}(z)}{a(z)} d z\right), \quad\left|\lambda_{22}\right|<\exp \left(-\int_{0}^{\ell} \frac{b_{22}(z)}{a(z)} d z\right), \\
\left|\lambda_{12}\right|\left|\lambda_{21}\right|<\exp \left(\int_{0}^{\ell} \frac{b_{11}(z)+b_{22}(z)-2 \sqrt{\left(b_{12}(z) b_{21}(z)\right)_{+}}}{a(z)} d z\right), \\
\lambda_{11} \lambda_{12} \lambda_{21} \lambda_{22}<\frac{1}{2} \exp \left(2 \int_{0}^{\ell} \frac{b_{11}(z)+b_{22}(z)-2 \sqrt{\left(b_{12}(z) b_{21}(z)\right)_{+}}}{a(z)} d z\right) .
\end{array}
$$

Here $(f(z))_{+}= \begin{cases}f(z), & f(z) \geq 0, \\ 0, & f(z)<0 .\end{cases}$
A non-diagonal Lyapunov function of the following form

$$
V(x)=\int_{0}^{\ell} e^{\mu z} x^{T}(z) P(z) x(z) d z, \quad P(z)=\frac{1}{a(z)} \Omega_{0}^{z} P_{0}\left(\Omega_{0}^{z}\right)^{T}
$$

is proposed, where $\mu>0, \Omega_{0}^{z}$ is the solution of the following linear matrix differential equation

$$
\frac{d \Omega_{0}^{z}}{d z}=\frac{1}{a(z)} B^{T}(z) \Omega_{0}^{z}, \quad \Omega_{0}^{0}=\operatorname{Id}, \quad B(z)=\left(b_{i j}(z)\right)_{i, j=1,2},
$$

P_{0} is a positive definite matrix. This Lyapunov function leads to the following conditions for the asymptotic stability of the system (1)-(2). We denote $r_{\sigma}($.$) is a spectral radius of a corresponding$ matrix.

Theorem 2 Let $r_{\sigma}\left(\left(\Omega_{0}^{\ell}\right)^{T} \Lambda\right)<1$, then the linear system (1)-(2) is exponentially stable.
Since the explicit form of matrices Ω_{0}^{z} is usually unknown, we proposed the non-diagonal Lyapunov function with the kernel

$$
P(z)=\frac{1}{a(z)} W^{T}(z) P_{0} W(z)
$$

P_{0} is a positive definite matrix, $W(z)=\exp U(z)$, where $U(z)$ is the partial sum of the Magnus series [2]

$$
\begin{aligned}
U(z)= & \int_{0}^{z} C(\tau) d \tau-\frac{1}{2} \int_{0}^{z}\left[C(\tau), \int_{0}^{\tau} C(\sigma) d \sigma\right] d \tau \\
& +\frac{1}{4} \int_{0}^{z}\left[C(\tau), \int_{0}^{\tau}\left[C(\sigma), \int_{0}^{\sigma} C(\rho) d \rho\right] d \sigma\right] d \tau \\
+ & \frac{1}{12} \int_{0}^{z}\left[\left[C(\tau), \int_{0}^{\tau} C(\sigma) d \sigma\right], \int_{0}^{\tau} C(\sigma) d \sigma\right] d \tau .
\end{aligned}
$$

Based on this Lyapunov function sufficient conditions of the asymptotic stability of the system (1)-(2) are obtained. We have compared various exponential stability conditions obtained using the diagonal and non-diagonal Lyapunov functions.

MSC 2010: 35L04, 37L15, 37L45
Keywords: Linear 1-D hyperbolic systems, exponential stability, Magnus series
Acknowledgement: This research was supported by the German Research Foundation (DFG), grant No. SL 343/1-1.

References

[1] G. Bastin, J. M. Coron, On boundary feedback stabilization of non-uniform linear 2×2 hyperbolic systems over a bounded interval. Systems and Control Letters 60 (2011), no. 11, 900-906; https://doi.org/10.1016/j.sysconle.2011.07.008.
[2] W. Magnus, On the exponential solution of differential equations for a linear operator. Communications on pure and applied mathematics 7 (1954), no. 4, 649-673; https://doi.org/10.1002/cpa.3160070404.

Abstracts of participants' talks

Properties of generalized Fibonacci and Lucas polynomials

GARVITA AGRAWAL ${ }^{1}$, MANJEET SINGH TEETH ${ }^{2}$, K. N. RAJESWARI ${ }^{3}$
${ }^{1,3}$ Devi Ahilya University, Madhya Pradesh, India
${ }^{2}$ Chritian Eminent College, Madhya Pradesh, India

emails: ${ }^{1}$ gravyagrawal@gmail.com; ${ }^{2}$ manjeetsinghteeth@rediffmail.com; ${ }^{3} \mathrm{knr}$ _k@yahoo.co.in
The renowned Fibonacci and Lucas polynomials possess various astounding properties and identities. The Fibonacci polynomial has been generalized in many ways by conserving the recurrence relation and others by preserving the initial conditions. In this paper we have defined generalized Fibonacci and Lucas polynomial and with the help of generating function and Binet's formula, we proved famous identities for the same in our settings.

MSC 2010: 11B37, 11B39, 11B50
Keywords: Fibonacci polynomial, Lucas polynomial, generalized Fibonacci polynomial, generalized Lucas polynomial, generating function

A study on r-Fibonacci and r-Lucas hybrid polynomials

N. ROSA AIT-AMRANE ${ }^{1}$, HACENE BELBACHIR ${ }^{2}$, ELIF TAN ${ }^{3}$
${ }^{1}$ Yahia Fares University, Medea, Algeria
${ }^{2}$ USTHB University, Algiers, Algeria
${ }^{3}$ Ankara University, Ankara, Turkey

emails: ${ }^{1}$ rosamrane@gmail.com, ${ }^{1}$ aitamrane.rosa@univ-medea.dz; ${ }^{2}$ hacenebelbachir@gmail.com;
${ }^{3}$ etan@ankara.edu.tr
The hybrid numbers was introduced by Ozdemir [4] as a generalization of complex, dual and hyperbolic numbers.

The set of hybrid numbers is defined as

$$
\begin{equation*}
\mathbb{K}=\left\{a+b i+c \varepsilon+d h \mid i^{2}=-1, \varepsilon^{2}=0, h^{2}=1, a, b, c, d \in \mathbb{R}\right\}, \tag{1}
\end{equation*}
$$

with i, ε, h are the complexe, the dual and the hyperbolic units, respectively where $i h=-h i=\varepsilon+i$.
In this work [1], we introduce the r-Fibonacci and r-Lucas hybrid polynomials. We investigate some basic properties of these hybrid polynomials. Also, we establish their matrix representation. We derive generalized Cassini's identity and generalized Honsberger formula for r-Fibonacci hybrid polynomials by using their matrix representation.

MSC 2010: 11B39, 05A15, 11R52
Keywords: r-Fibonacci polynomial, r-Lucas polynomial, hybrid number

References

[1] N. R. Ait-Amrane, H. Belbachir, E. Tan, On generalized Fibonacci and Lucas Hybrid polynomials. Turkish Journal of Mathematics. In Press.
[2] M. Alkan, The Generalized Fibonacci Sequences on an Integral Domain. Montes Taurus J. Pure Appl. Math. 3 (2021), no. 2, 60-69.
[3] C. Kızılates, A note on Horadam hybrinomials. Fundamental Journal of Mathematics and Applications 5 (2022), no. 1, 1-9.
[4] M. Ozdemir, Introduction to Hybrid Numbers. Advances in Applied Clifford Algebras 26 (2016), 441-447.
[5] E. Sevgi, The generalized Lucas hybrinomials with two variables. Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. 70 (2021), no. 2, 622-630.
[6] A. Szynal-Liana, I. Wloch, Introduction to Fibonacci and Lucas hybrinomials. Complex Var. and Elliptic Equ. (2019); doi:10.1080/17476933.2019.1681416.
[7] E. Tan, N. R. Ait-Amrane, On a new generalization of Fibonacci hybrid numbers. Unpublished.

Cholesky and $L U$ algorithms of Lucas type matrices

ILKER AKKUS ${ }^{1}$, BETÜL ERDOĞAN ${ }^{2}$
1,2 Kırıkkale University, Kırıkkale, Turkey
emails: ${ }^{1}{ }^{1} 1 \mathrm{kerakkus} @ k k u . e d u . t r ;{ }^{2}$ btl.erdgn46@gmail.com

Horadam investigated the generalized Fibonacci sequence $W_{n}(a, b ; p, q)$, where a, b, p, q are integers $W_{0}=a, W_{1}=b$ and

$$
W_{n+2}=p W_{n+1}+q W_{n}, \quad n \geq 2 .
$$

For $a=0, b=1$ and $q=1$, we use the recurrence $W_{n}(a, b ; p, q)$ in the form

$$
U_{n+2}=p U_{n+1}+U_{n}, \quad n \geq 2
$$

For $a=2, b=1$ and $q=1$, we use the form $W_{n}(a, b ; p, q)$ in the form

$$
V_{n+2}=p V_{n+1}+V_{n}, \quad n \geq 2
$$

The main purpose of this study is to use a 2 -by- 2 matrix determined by the Cholesky and $L U$ decomposition algorithms to construct a collection of identities including U_{n} and V_{n}. Some of these identities, extend the results obtained elsewhere articles.

Some well-known examples of the use of the 2-by-2 matrix, covering summation of some finite series including U_{n} and V_{n}, are showed. A way for calculating some infinite series is then offered which is based on the use of a closed form expression for certain matrix functions.

MSC 2010: 11B39, 15A23
Keywords: Factorization of matrices; generalized Fibonacci and Lucas numbers; recurrences

References

[1] S. L. Basin, V. E. Hoggatt Jr., A primer on the Fibonacci sequence: Part II. Fibonacci Quarterly 1 (1963), no. 2, 47-52.
[2] G. E. Bergum, V. E. Hoggatt Jr., An application of the characteristic of the generalized Fibonacci sequence. Fibonacci Quarterly 15 (1977), no. 3, 215-220.
[3] J. H. Clarke, A. G. Shannon, Some generalized Lucas sequences. Fibonacci Quarterly 23 (1985), no. 2, 120-125.
[4] P. Filipponi, A. F. Horadam, A matrix approach to certain identities. Fibonacci Quarterly 26 (1988), no. 2, 115-126.
[5] V. E. Hoggatt Jr., M. Bicknell-Johnson, Generalized Lucas sequences. Fibonacci Quarterly 15 (1977), no. 2, 131-139.
[6] A. F. Horadam, P. Filipponi, Cholesky algorithm matrices of Fibonacci type and propertıes of generalized sequences. Fibonacci Quarterly 29 (1991), no. 2, 164-173.

Spectral properties of some matrices with binomial coefficients

ILKER AKKUS ${ }^{1}$, SAFAK YENIAYDIN ${ }^{2}$
1,2 Kırıkkale University, Kırıkkale, Turkey
emails: ${ }^{1}$ ilkerakkus@kku.edu.tr; safakyeniaydin@gmail.com ${ }^{2}$

Characteristic polynomial and trace properties of the right-justified binomial matrix and its inverse had been introduced by L. Carlitz in 1965 [1]. When the right-justified binomial matrix and its inverse are added or subtracted, another binomial coefficients matrices are obtained. This property is our the mainly motivation on making a research on this study. The second one is when studied on eigenvalues, it's seen that, they can be identified in terms of Lucas and Fibonacci numbers. Beside that, eigenvalues of these matrices make some periodic sequences in modulo 3, modulo 5 and modulo 7 similar to case in [2] and this explains constructions of characteristic polynomials in modulo 3 , modulo 5 and modulo 7 . Since similar properties can be seen in characteristic polynomial of the right-justified binomial matrix, this polynomial is studied on a paper [3] published by P.Stanica and R.Peele. Finally, owing to eigenvalues can be expressed in terms of Lucas and Fibonacci numbers, these numbers are seen in trace and determinant values too.

MSC 2010: 11B65, 15A15, 15A18
Keywords: Binomial coefficients, eigenvalues and eigenvectors, determinants

References

[1] L. Carlitz, The characteristic polynomial of a certain matrix of binomial coeeficients. Fibonacci Quart. 3 (1965), 81-89.
[2] C. W. Campbell II, Period of the Fibonacci sequence modulo j. Math 399, Advisor: Dr. Nick Rogers, 2007.
[3] P. Stanica, R. Peele, Spectral properties of a binomial matrix, unpublished manuscript, http://arxiv.org/abs/math/0011111, 2000.

On the stratified domination number of generalized Petersen graphs

MEHMET SERIF ALDEMIR ${ }^{1}$, SULEYMAN EDIZ ${ }^{2}$, MURAT CANCAN ${ }^{3}$

${ }^{1,2,3}$ Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ msaldemir@yyu.edu.tr; ${ }^{2}$ suleymanediz@yyu.edu.tr; ${ }^{3}$ mcancan@yyu.edu.tr
Stratified graphs have important role in VLSI design in electronic engineering science. The vertex set of any graph is called two stratified graph when its vertex set partitioned into two disjunction sets. Various domination parameters have been calculated for generalized Petersen graphs so far. In this study we firstly investigated two stratified domination number for the generalized Petersen graphs $G P(n, 1)$ and $G P(n, 2)$. We presented our results in two closed formulas.

MSC 2010: 05C07, 05C69, 05C90
Keywords: Domination, stratified domination, generalized Petersen graphs

Second order partial differential evolutionary equations driven by variational-like inequalities

IMRAN ALI ${ }^{1}$, JAVID IQBAL ${ }^{2}$
${ }^{1}$ Kalasalingam Academy of Research and Education, Anand Nagar Krishnankoil, Tamil Nadu, India
${ }^{2}$ BGSB University, Rajouri, India
emails: ${ }^{1}$ imranali@klu.ac.in; ${ }^{2}$ javid2iqbal@gmail.com

In this paper, we introduce and study a system by mixing an evolutionary second order partial differential equation and a mixed variational-like inequality in Banach spaces, which is called second order evolutionary partial differential variational-like inequality ((SOEPDVLI), in short). The solutions for (SOEPDVLI) in the mild sense is given by using the theory of strongly continuous cosine family of bounded linear operator. We have proved that the solution set of mixed variational-like inequalities involved in (SOEPDVLI) is nonempty, bounded, closed and convex. We have proved that the mapping $\mathcal{U}:[0, T] \times Y \times Y \rightarrow \Pi_{b \nu}(X)$ is upper semicontinuous and measurable. Finally, an existence result for (SOEPDVLI) is obtained by using fixed point theorem for condensing set-valued operators and theory of measures of non-compactness.

MSC 2010: 49J40, 34G25, 49K40
Keywords: Second order evolution equation, Variational-like inequality, Cosine family, Measure of non-compactness, Mild solution

References

[1] R., Ahmad, J. Iqbal, J., I., Ali, and W.A. Mir, Solving nonlinear variational-like inclusion problems using η-Proximal Mappings. In: Journal of Nonlinear and Convex Analysis, Volume 22, Number 8, 1577-1590, (2021).
[2] Z.H., Liu, S.D., Zeng, D., Motreanu, Evolutionary problems driven by variational inequalities J. Differential Equations, 260 (2016), 6787-6799.
[3] Z., Liu, S.,Migórski, S. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J. Differential Equations 263 (2017), 3989-4006; doi:10.1016/j.jde.2017.05.010.

The use of dual reciprocity boundary element method for solving the coupled nonlinear Sine-Gordon equations

NAGEHAN ALSOY-AKGÜN

Van Yüzüncü Yıl University, Van, Turkey
email: nagehanalsoyakgun@yyu.edu.tr
In this study, the dual reciprocity boundary element method (DRBEM) is used for the solution of two-dimensional time dependent coupled sine-Gordon equations. The form of the modified Helmholtz equations are obtained by using central difference approximations for both first and second order time derivatives and by inserting the finite difference approximations into the governing equation. The fundamental solution of modified Helmholtz equation is employed in the integral equation formulation. The inhomogeneous terms of the equation cause a domain integral in the boundary integral equation. The DRBEM provides to transform the domain integral into the boundary integral by approximating with thin plate spline the inhomogeneous term of the eqution $\left(r^{2} \ln r\right)$. The main aim of the current study is to show that DRBEM is also suitable for solving the system of coupled nonlinear sine-Gordon equations. Several test problems are employed and results of numerical experiments are presented and also are compared with analytical solutions. Presented numerical results are observed to be in good agreement with other numerical results given in [1] and [2].

MSC 2010: 65M38, 65N38, 35J05
Keywords: Coupled sine-Gordon equation, DRBEM, FDM, modified Helmholtz equation

References

[1] M. Ilati, M. Dehghan, The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52 (2015), 99-109; doi:10.1016/j.enganabound.2014.11.023
[2] D. Deng, Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method. Numer. Funct. Anal. Optim. 40 (2019), no. 9, 1053-1079; doi:10.1080/01630563.2019.1596951

Stability analysis for high-order Volterra delay integro-differential equation

ILHAME AMIRALI ${ }^{1}$, $\underline{H U ̈ L Y A ~ A C A R ~}^{2}$
1,2 Duzce University, Duzce, Turkey
emails: ${ }^{1}$ ailhame@gmail.com; ${ }^{2}$ hulyaacar98@gmail.com

High-order linear Volterra delay integro-differential equations are examined in the present paper. Proposed approach, which will be provided for solving high-order linear Volterra delay integrodifferential equations, expresses certain key elements of determining the equations' stability bounds and exact solutions. Furthermore, stability inequalities can be generated for each order of derivative using the proposed method.

Consider the following high-order Volterra delay integro-differential equation:

$$
\begin{equation*}
u^{(n)}(t)+a(t) u^{(n-1)}(t)+b(t) u(t-r)+\int_{t-r}^{t} K(t, s) u(s) d s=f(t) \tag{1}
\end{equation*}
$$

on $(0, T]$ with the interval conditions:

$$
\begin{equation*}
u(t)=\varphi(t), \quad u^{(i)}(0)=B_{i}, \quad i=1,2, \ldots, n-1 \quad \text { and } \quad t \in I_{0}, \tag{2}
\end{equation*}
$$

where $I=(0, T]=\cup_{p=1}^{m} I_{p}, I_{p}=\left\{t: r_{p-1}<t \leq r_{p}\right\}, 1 \leq p \leq m$ and $r_{s}=s r$, for $0 \leq s \leq m, \bar{I}=$ $[0, T], I_{0}=[-r, 0], a(t) \geq 0, f(t), a(t)(t \in \bar{I}), \varphi(t)\left(t \in I_{0}\right)$ and $K(t, s)((t, s) \in \bar{I} \times \bar{I})$ are provided sufficiently smooth functions that satisfy specific regularity conditions to be described, r is a constant delay. Moreover, we will assume that $a, b, f \in C(\bar{I}), \varphi \in C^{2}\left(I_{0}\right)$ and $\frac{\partial^{2} K}{\partial s^{2}} \in C\left(\bar{I}^{2}\right)(s=0,1,2)$.

MSC 2010: 34K28, 45J05, 65L05
Keywords: Volterra integro-differential equation, high-order delay integro-differential equation, stability inequality

References

[1] I. Amirali, G. M. Amiraliyev, Three layer difference method for linear pseduo-parabolic equation with delay. Journal of Computational and Applied Mathematics 401 (2022), 118-173; doi: 10.1016/j.cam.2021.113786.
[2] I. Amirali, Analysis of higher order difference method for a pseudo-parabolic equation with delay. Miskolc Mathematical Notes 20 (2019), no. 2, 755-766; doi: 10.18514/MMN.2019.2895.
[3] I. Amirali, S. Cati, G. M. Amiraliyev, Stability inequalities for the delay pseudo-parabolic equations. International Journal of Applied Mathematics 32 (2019), no. 2, 289-294; doi: 10.12732/ijam.v32i2.10.

On some stochastic time-fractional integral equations

ZINEB ARAB ${ }^{1}$, CEMIL TUNÇ ${ }^{2}$
${ }^{1}$ Batna 1 University, Batna, Algeria
${ }^{2}$ Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ zinebarab@yahoo.com; ${ }^{2}$ cemiltunc@yyu.edu.tr

In the current work, we deal with a class of stochastic time-fractional integral equations in Hilbert space by studying their wellposedness and regularity. Precisely, we use the celebrity fixed point theorem to prove the wellposedness of the problem by imposing the global Lipschitz and the linear growth conditions. Further, we prove the spatial and the temporal regularity by imposing only a regularity condition on the initial value. An important example is considered in order to confirm and to support the validity of our theoretical results.

MSC 2010: 35B65, 35R11, 35R60, 60H15, 65M75
Keywords: Integral equations, Riemann-Liouville integral operator, cylindrical Wiener process, fixed point theorem, spatial regularity, temporal regularity

Acknowledgement: The first author would like to thank deeply Prof. Dr. Cemil Tunc for giving her this precious opportunity to work with him.

References

[1] M. N. Alam and C. Tunc, Construction of the optical solitons and other solitons to the comformable fractional Zakhorov-Kuznetsov equation with power law nonlinearity. Journal of Taibah University for science. 14 (2020), no. 1, 94—100; doi:10.1080/16583655.2019.1708542
[2] Z. Arab and L. Debbi, Fractional stochastic Burgers-type Equation in Hölder space Wellposedness and approximations. Math. Methods Appl. Sci. 44 (2021), 705-736
[3] M. M. Elborai, Some probability densities and fundamental solution of fractional evolution equations. Chaos Solit. Fractals 14 (2002), 51—74

On the existence of positive periodic solutions of nonlinear neutral differential equations

İREM ARIK ${ }^{1}$, CEMİL TUNÇ ${ }^{2}$
${ }^{1}$ Siirt University, Siirt, Turkey
${ }^{2}$ Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ iremmmatematik@gmail.com; ${ }^{2}$ cemtunc@yahoo.com

In this paper, we discuss the existence of positive periodic solutions of a nonlinear neutral differential equation by using Krasnoselskii's fixed point theory. A new result, which include sufficient conditions, is proved on the existence of periodic solutions of the consider equation. By this work, we generalized some results in the literature. The new result of this paper makes contribution to topic of the existence of positive periodic solution. We give also an example for illustrations.

MSC 2010: 34K20, 34K06, 34K40.
Keywords: Neutral differential equation, fixed point theorem, positive periodic solutions

References

[1] I. Akbulut, C. Tunç,2019. On the stability of solutions of neutral differential equations of first order. International Journal of Mathematics and Computer Science 14 (2019), no. 4, 849-866.
[2] T. A. Burton, Stability by fixed point theory for functional differential equations. Dover, New York, 2006.
[3] Y. N. Raffoul, Positive periodic solutions in neutral nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2007 (2007), no. 16, 10 pp.
[4] Y. N. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay. Rocky Mountain J. Math. 42 (2012), no. 6, 1983-1993.
[5] Y. Song, Positive periodic solutions of a periodic survival red blood cell model. Applicable Anal. 84 (2005), no. 11, 1095-1101.
[6] C. Tunç, I. Akbulut, Stability of a integro-differential equation of first order with variable delays. Bulletin of Mathematical Analysis and Applications 10 (2018), no. 2, 19-20.

Stability of Jordan k-derivations on Г-Banach algebras

BERNA ARSLAN
Aydın Adnan Menderes University, Aydın, Turkey
email: byorganci@adu.edu.tr

The stability of functional equations was first introduced by S.M. Ulam [4] in 1940. Since then several results concerning the Hyers-Ulam-Rassias stability of various functional equations with more general domains and ranges have been extensively investigated by many mathematicians. The concept of a Γ-ring was introduced by N. Nobusawa [3] and generalized by W.E. Barnes [1]. D.K Bhattacharya and A.K. Maity [2] gave the definition of a Γ-Banach algebra in 1989. Γ-Banach algebras are generalization of both the concepts of Banach algebras and Γ-rings. Let V be a Γ-Banach algebra over the complex field \mathbb{C} and let $D: V \rightarrow V$ and $k: \Gamma \rightarrow \Gamma$ be two linear mappings. If $D(a \alpha a)=D(a) \alpha a+a k(\alpha) a+a \alpha D(a)$ for all $a \in V, \alpha \in \Gamma$, then D is called a Jordan k-derivation of V.

In this talk, we will investigate the Hyers-Ulam-Rassias stability and superstability of Jordan homomorphisms and Jordan k-derivations on Γ-Banach algebras by using fixed point methods for the following Jensen-type functional equation $\mu f\left(\frac{x+y}{2}\right)+\mu f\left(\frac{x-y}{2}\right)=f(\mu x)$ where μ is a complex number such that $|\mu|=1$.

MSC 2010: 39B52, 39B82, 16W25, 16Y99
Keywords: Hyers-Ulam-Rassias stability, superstability, Γ-Banach algebra, k-derivation, Jordan k-derivation

References

[1] W. E. Barnes, On the Г-rings of Nobusawa. Pacific J. Math. 18 (1966), no. 3, 411-422.
[2] D. K. Bhattacharya and A. K. Maity, Semilinear tensor product of Gamma Banach algebras. Ganita 40 (1989), 78-80.
[3] N. Nobusawa, On the generalization of the ring theory. Osaka J. Math. 1 (1964), 81-89.
[4] S. M. Ulam, Problems in Modern Mathematics. Chapter VI, science ed. Wiley, New York, 1940.

On the source of semi-primeness of Γ-rings

OKAN ARSLAN ${ }^{1}$, AHMET GENÇ ${ }^{2}$
1,2 Adnan Menderes University, Aydın, Turkey
emails: ${ }^{1}$ oarslan@adu.edu.tr; ${ }^{2}$ agenc@adu.edu.tr

The notion of a Γ-ring was introduced by N. Nobusawa [1] in 1964, and then W.E. Barnes [2] generalized Nobusawa's definition by weakening the conditions and developed the more general Γ-ring in which all the classical rings are contained in this Γ-ring. Since then the theory of Γ-rings have been extensively investigated by a number of mathematicians to develop many basic characterizations of Γ-rings.

Semi-prime ideals and prime ideals are important for determining properties of the structure of Γ-rings. Many mathematicians make use of these concepts while working in this field. Therefore, the notion of the source of semi-primeness is a candidate to give important results for these structures.

The source of semi-primeness for usual rings was first defined by N. Aydın, Ç. Demir and D. K. Camcı in [3]. In this talk, we introduce the notion of the source of semi-primeness of Γ-rings as the subset $S_{M}=\{a \in M: a \Gamma M \Gamma a=(0)\}$ of M and we give the definition of $\left|S_{M}\right|$-reduced Γ-ring M. Then, we investigate some basic results of these notions for Γ-rings.

MSC 2010: 05C25, 13A15, 13M05
Keywords: Gamma ring, semi-primeness, reduced gamma ring

References

[1] N. Nobusawa, On a generalization of the ring theory. Osaka J. Math. 1 (1964), 81-89.
[2] W. E. Barnes, On the 「-rings of Nobusawa. Pacific J. Math. 18 (1966), no. 3, 411-422.
[3] N. Aydın, Ç. Demir and D. K. Camcı, The source of semiprimeness of rings. Commun. Korean Math. Soc. 33 (2018), no. 4, 1083-1096.

Roman type domination parameters of Lucas cubes

MERVE ARTIRAN ${ }^{1}$, ZÜLFÜKAR SAYGI ${ }^{2}$
${ }^{1,2}$ TOBB University of Economics and Technology, Ankara, Turkey
emails: ${ }^{1}$ martiran@etu.edu.tr; ${ }^{2}$ zsaygi@etu.edu.tr

The n-dimensional hypercube graph denoted by Q_{n} is one of the basic models for interconnection networks. The vertices of Q_{n} are represented by all binary strings of length n and two vertices are adjacent if and only if they differ in exactly one position. By removing all the vertices containing two consecutive l's and the vertices that start and end with 1 from the vertex set of Q_{n}, n-dimensional Lucas cubes are obtained for $n \geq 2$ [1].

The domination problem is one of the hard problem in graph theory Let G be a graph and the D be a subset of the vertex set $V(G)$ of $G . D$ is a called a dominating set if every vertex from $V(G)$ either belongs to D or adjacent to some vertex from D. The domination number of G is the minimum cardinality of a dominating set of G. The domination number can be used to reduce costs and increase speed in areas such as transportation network and food service. For a general graph it is hard to determine its domination number.

A Roman dominating function of a graph G is a labeling $f: V(G) \rightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2 [2]. The Roman domination number $\gamma_{R}(G)$ of G is the minimum of $\sum_{v \in V(G)} f(v)$ over all Roman dominating functions. Later, different types of Roman dominating sets were formed by specialization. In this work, we examine three different Roman domination type parameters and obtain their exact values for Lucas cubes of up to 10 dimensions using Integer Linear Programming.

MSC 2010: 11B39, 05C69, 68R10
Keywords: Lucas cube, Domination number, Roman domination number
Acknowledgement: This work is partially supported by TÜBİTAK under Grant No. 120F125.

References

[1] E. Munarini, C. Perelli Cippo and N. Zagaglia Salvi, On the Lucas cubes. Fibonacci Quart. 39 (2001), no. 1, 12-21; https://www.fq.math.ca/Scanned/39-1/munarini.pdf.
[2] O. Favarona, H. Karamic, R. Khoeilar and S.M. Sheikholeslamic, On the Roman domination number of a graph. Discrete Mathematics 309 (2009), 3447-3451; doi:10.1016/j.disc.2008.09.043.

M-extension of Lauricella hypergeometric functions and their integral representations

ENES ATA
Kırşehir Ahi Evran University, Kırşehir, Turkey
email: enesata.tr@gmail.com

In this paper, we introduce new extensions of Lauricella hypergeometric function $F_{A}^{(r)}$, Lauricella hypergeometric function $F_{B}^{(r)}$, Lauricella hypergeometric function $F_{C}^{(r)}$, and Lauricella hypergeometric function $F_{D}^{(r)}$, by using the modified beta function, which given with the generalized M-series in its kernel. Furthermore, we obtained various integral formulas for the newly defined extended Lauricella hypergeometric function $F_{A}^{(r)}$, extended Lauricella hypergeometric function $F_{B}^{(r)}$, extended Lauricella hypergeometric function $F_{C}^{(r)}$, and extended Lauricella hypergeometric function $F_{D}^{(r)}$.

MSC 2010: 33B15, 33C15, 33C65
Keywords: Beta function, confluent hypergeometric function, generalized M-series, Lauricella's hypergeometric functions

References

[1] E. Ata and İ. O. Kıymaz, A study on certain properties of generalized special functions defined by Fox-Wright function. Appl. Math. Nonlinear Sci. 5 (2020), no. 1, 147-162.
[2] E. Ata, Generalized beta function defined by Wright function. arXiv:1803.03121v3 [math.CA] (2021).
[3] E. Ata, Modified special functions defined by generalized M-series and their properties. arXiv:2201.00867v1 [math.CA] (2022).
[4] H. M. Srivastava, H. L. Manocha, A Treatise On Generating Functions. Halsted Press, New York, 1984.
[5] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series. Halsted Press, New York, 1985.
[6] M. Sharma and R. Jain, A note on a generalized M-series as a special function of fractional calculus. Fract. Calc. Appl. Anal. 12 (2009), no. 4, 449-452.

Boundedness of solutions to a nonlinear differential equation of fourth order

MUZAFFER ATEŞ
Van Yuzuncu Yil Univesity, Van, Turkey
email: ates.muzaffer65@gmail.com

We consider the boundedness of the solution to a certain nonlinear differential equation of fourthorder. We prove that the solution and their derivatives up to order five are bounded by using the Cauchy formula for the solution of the nonhomogeneous differential equation. In this investigation, we will give two auxiliary lemmas and one main result.

MSC 2010: 34D23; 34D20; 34C23
Keywords: Fourth- order differential equation, boundedness of the solutions, Cauchy formula

References

[1] B. S. Ogundare, Boundedness of solutions to fourth order differential equations with oscillatory restoring and forcing terms. Electronic Journal of Differential Equations. 2006 (2006), no. 6, 1-6.
[2] M. O. Omeike, Boundedness of solutions to fourth-order differential equation with oscillatory restoring and forcing terms. Electronic Journal of Differential Equations. 2007 (2007), no. 104, 1-8.
[3] C. Tunc, M. Ates, Boundedness of Solutions to Differential Equations of Fourth Order with Oscillatory Restoring and Forcing Terms. Discrete Dynamics in Nature and Society. 2013 (2013), no. 758796, 5 pages; doi:10.1155/2013/758796
[4] J. Andres, Boundedness of solutions of the third order differential equation with oscillatory restoring and forcing terms. Czechoslovak Mathematical Journal. 36 (1986), no. 1, 1-6; doi:10.21136/cmj.1986.102058
[5] M. Ates, On the Global Stability Properties and Boundedness Results of Solutions of Third-Order Nonlinear Differential Equations. Journal of Applied Mathematics 2013 (2013), no. 103260, 4 pages; doi:10.1155/2013/103260
[6] A. U. Afuwape, O. A. Adesina, Frequency-domain approach to stability and periodic solutions of certain fourth-order non-linear differential equations. Nonlinear Studies 12 (2005), no. 3, 259-269.
[7] C.Tunc, A note on the stability and boundedness results of solutions of certain fourth order differential equations. Applied Mathematics and Computation 155 (2004), no. 3, 837-843; doi:10.1016/s0096-3003(03)00819-1.
[8] C. Tunc, An ultimate boundedness result for a certain system of fourth order nonlinear differential equations. Differential Equations and Applications 2007 (2007), no. 5, 127-135.

Lyapunov stability analysis of electrical power systems

MUZAFFER ATEŞ ${ }^{1}$, RODI AYID ALI ${ }^{2}$
${ }^{1,2}$ Van Yüzüncü Yıl University, Van, Turkey
emails: ${ }^{1}$ ates.muzaffer65@gmail.com; ${ }^{2}$ rodi.ayid@hotmail.com;

In this paper, we consider the properties of the power system stability of multi-machine system by Lyapunov direct method which is one of the most powerful tools for determining the behavior of dynamical systems. The method of Lyapunov enables us to determine the stability properties of dynamical systems that cannot be solved explicitly by the closed forms. With constructing the suitable Lyapunov function the stability to the machines empower the stability of the overall interconnected system.

MSC 2010: 34D23; 34D20; 34C23
Keywords: power system stability analysis, transient stability, Lyapunov direct method

References

[1] G. Gless, Direct Method of Liapunov Applied to Transient Power System Stability. IEEE Transactions on Power Apparatus and Systems PAS-85 (1966), no. 2 159-168; doi:10.1109/tpas.1966.291553
[2] A. El-Abiad and K. Nagappan, Transient Stability Regions of Multimachine Power Systems. IEEE Transactions on Power Apparatus and Systems PAS-85 (1986), no. 2, 169-179; doi.org/10.1109/tpas.1966.291554
[3] C. Szendy and B. Bokay, Transient and steady state stability conditions of power systems. Journal of Applied Mathematics 308 (1960), CIGRE, Paris, France.
[4] Y. N. Yu, K. Vongsuriya and L. N. Wedman, Application of an optimal control theory to a power system. IEEE Transactions on Power Apparatus and Systems PAS-89 (1970), no. 1, 55-62; doi:10.1109/tpas.1970.292668
[5] Y. N. Yu and C. Siggers, Application of an optimal control theory to a power system. IEEE Transactions on Power Apparatus and Systems PAS-90 (1971), no. 4, 1469-1481; doi:10.1109/tpas.1971.293131

Mahgoub transform method in stability research

HARUN BİÇER
Bingol University, Bingol, Turkey
email: hbicer@bingol.edu.tr
The traditional Fourier integral is where the Mahgoub Transform gets its name. Mohand Mahgoub developed the Mahgoub transform to make it easier to solve regular and partial differential equations in the time domain. The most practical mathematical methods for solving differential equations are often Fourier, Laplace, Elzaki, Aboodh, and Sumudu transforms. In order to solve differential equations, the Mahgoub transform and some of its essential features are also used.

The main aim of this study is to investigate the stability of the homogeneous and nonhomogeneous second order partial differential equations using the Mahgoub transform method.

MSC 2010: 34K20, 34K30, 34D04
Keywords: Mahgoub Transform Method, stability, partial differential equation

References

[1] S. Aggarwal, Comparative study of Mohand and Mahgoub transforms. J. Adv. Res. Appl. Math. Stat. 4 (2019), 1-7.
[2] S. Aggarwal, et al., Application of Mahgoub transform for solving population growth and decay problems. Journal of Computer and Mathematical Sciences 9 (2018), 1490-1496.
[3] S. Aggarwal, N. Sharma, and R. Chauhan, Solution of linear Volterra integro-differential equations of second kind using Mahgoub transform. International Journal of Latest Technology in Engineering, Management \mathcal{E} Applied Science 7 (2018), 173-176.

Integral modification of Lupaş type operators

MURAT BODUR ${ }^{1}$, PRASHANTKUMAR PATEL ${ }^{2}$
${ }^{1}$ Konya Technical University, Konya, Turkey
${ }^{2}$ Sardar Patel University, Vallabh Vidyanagar, Gujarat, India emails: ${ }^{1}$ mbodur@ktun.edu.tr; ${ }^{2}$ prashant225@gmail.com

This talk aims to modify Lupaş type operators to approximate integrable functions on $[0, \infty)$. Firstly, we propose Lupaş type operators which are called Lupaş-Jain operators and construct integral modification of Lupaş type operators. Then, we investigate the approximation results using some approaches. Lastly, we give a Voronovskaya-type asymptotic theorem.

MSC 2010: 41A36, 41A35, 41A25
Keywords: Lupaş-Jain operators, local approximation, Voronovskaya type theorem

References

[1] G. Başcanbaz-Tunca, M. Bodur and D. Söylemez, On Lupaş-Jain Operators. Stud. Univ. BabeşBolyai Math. 63 (2018), no. 4, 525-537.
[2] G. C. Jain, Approximation of functions by a new class of linear operators. J. Aust. Math. Soc. J. 13 (1972), no. 3, 271-276.
[3] A. Lupaş, The approximation by some positive linear operators. In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Muller et al.,eds.), Mathematical Research 86 (1995), 201-229.
[4] P. Patel, V. N. Mishra, On new class of linear and positive operators. Boll. Unione Mat. Ital. 8 (2015), no. (2), 81-96.

Multiple fixed point results for sum of operators and application

LYDIA BOUCHAL ${ }^{1}$, KARIMA MEBARKI ${ }^{2}$
1,2 Bejaia University, Bejaia, Algeria
emails: ${ }^{1}$ lydia.bouchal@univ-bejaia.dz; ${ }^{2}$ karima.mebarki@univ-bejaia.dz

In this talk, we are concerned with the study of existence, multiplicity, positivity and localization of solutions for abstract equations of the form: $T x+S x=x, \quad x \in D$, where $(I-T)$ is a Lipschitz invertible mapping, S is a k-set contraction and D is a translate of cone of a Banach space. Then by making use of our theoretical results, general criteria on the existence of multiple positive solutions to the following singular generalized Sturm-Liouville multipoint boundary value problem are established:

$$
\begin{align*}
-u^{\prime \prime}(t) & =h(t) f\left(t, u(t), u^{\prime}(t)\right), 0<t<1, \\
a u(0)-b u^{\prime}(0) & =\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \tag{1}\\
c u(1)+d u^{\prime}(1) & =\sum_{i=1}^{m-2} b_{i} u\left(\xi_{i}\right)
\end{align*}
$$

where $a, b, c, d \in[0, \infty), 0<\xi_{1}<\xi_{2}<\ldots<\xi_{m-2}<1(m \geq 3), a_{i}, b_{i} \in[0, \infty)$ are constants for $i=$ $1,2, \ldots, m-2$ and $\rho=a c+a d+b c>0$.

MSC 2010: 47H10, 34B10, 34B24
Keywords: Fixed point, sum of operators, cone, Sturm-Liouville BVP, multiple positive solutions

References

[1] S. Djebali and K. Mebarki, Fixed point on Translates of Cones and Applications. Nonlinear Studies 21 (2014), no. 4, 579-589.
[2] S. Djebali and K. Mebarki, Fixed Point Index Theory for Perturbation of Expansive Mappings by k-set Contractions. Top. Meth. Nonli. Anal. 54 (2019), no. 2, 613-640.
[3] S. Djebali and K. Mebarki, Fixed point theory for sums of operators. Jour. of Nonl. and Convex Analy. 19 (2018), no. 6, 1029-1040.
[4] R. Ma, Multiple positive solutions for nonlinear m-point boundary value problem. Appl.Math.Comput 148 (2004), no. 1, 249-262.
[5] Y.W. Zhang and H.R. Sun, Three positive solutions for a generalized Sturm-Liouville multipoint BVP with dependence on the first order derivative. Dynam. Systems Appl. 17 (2008), no. 2, 313-324.
[6] Y. W. Zhang, A multiplicity result for a singular generalized Sturm-Liouville boundary value problem. Mathematical and Computer Modelling 50 (2009), no. 1-2, 132-140.

A note on some spaces induced by convex polyhedra and their isometry groups

ZEYNEP CAN
Aksaray University, Aksaray, Türkiye
email: zeynepcan@aksaray.edu

By the studies on metric space geometry is has seen that some metrics and convex polyhedra are closely related. There are three essential methods in geometric investigations; synthetic, metric and group approach. The group approach treats isometry groups of a geometry and convex sets play a substantial role in indication of the isometry group of geometries. In this study, we investigate isometry groups of some Non-Euclidean spaces each whose unit ball is a truncated catalan solid.

MSC 2010: 51B20, 51N25, 51F99, 51K05, 51K99, 52A15, 52B10
Keywords: Metric, truncated Catalan solids, isometry group
Acknowledgement: The study is supported by Research Fund of the Aksaray University under Project Number 2021-18.

References

[1] A. C. Thompson, Minkowski Geometry. Cambridge University Press, Cambridge, 1996.
[2] P. R. Cromwell, Polyhedra. Cambridge University Press, Cambridge, 1997.
[3] H. S. M. Coxeter, Regular Polytopes. Pitman, 1947.
[4] A. G. Horvath, Isometries of Minkowski geometries. Lin. Algebra and Its Appl. 512 (2017), 172190.
[5] Ö. Gelisgen and R. Kaya, The Isometry Group of Chinese Checker Space. International Electronic Journal Geometry 8 (2015), no.2, 82-96.
[6] Ö. Gelisgen and Z. Can, On The Family of Metrics for Some Platonic and Archimedean Polyhedra. Konuralp Journal of Mathematics 4 (2016), no. 2, 25-33.
[7] Ö. Gelisgen and S. Yavuz, Isometry Groups of Chamfered Cube and Chamfered Octahedron Spaces. Mathematical Sciences and Applications e-Notes 7 (2019), no. 2, 174-182.
[8] T. Ermis and R. Kaya, Isometries the of 3-Dimensional Maximum Space. Konuralp Journal of Mathematics 3 (2015), no. 1, 103-114.

Divided domains satisfy the weakly radical formula

SİBEL CANSU ${ }^{1}$, EROL YILMAZ ${ }^{2}$, UĞUR USTAOĞLU ${ }^{3}$
${ }^{1,2,3}$ Bolu Abant İzzet Baysal University, Bolu, Turkey

emails: ${ }^{1}$ kilicarslan_s@ibu.edu.tr; ${ }^{2}$ yilmaz_e2@ibu.edu.tr; ${ }^{3}$ ugur.ustaoglu@ibu.edu.tr
Throughout all rings are commutative and all modules are unitary. Let R be a ring and M be an R-module. A proper submodule N of M is called prime if whenever $r m \in N$, for some $r \in R, m \in M$ then $m \in N$ or $r M \subseteq N$. Also N is called weakly prime submodule if $r s m \in N$ implies $r m \in M$ of $s m \in N$ for some $r, s \in R, m \in M$. The notion of weakly prime submodule was introduced in [3]. If N is a proper submodule of an R-module M, then the prime radical of $N, \operatorname{rad}_{M}(N)$, is defined as the intersection of all prime submodules containing N. Also, the weakly radical of N in M, $\operatorname{wrad}_{M}(N)$, is the intersection of all weakly prime submodules of M containing N. Since every prime submodule is weakly prime, $\operatorname{wrad}_{M}(N) \subseteq \operatorname{rad}_{M}(N)$. The envelope of an R-module $M, E_{M}(N)$, is the set of all elements $x \in M$ where $x=r m$ with $r \in R, m \in M$ such that $r^{k} m \in N$ for some positive integer k. If for a submodule N of the module $M, \operatorname{wrad}_{M}(N)=\left\langle E_{M}(N)\right\rangle$, then it is said that N satisfies the weakly radical formula (s.t.w.r.f).

If R is a commutative ring with identity whose prime ideals are linearly ordered, then $\operatorname{wrad}_{M}(N)$ is weakly prime for any submodule N of an R-module M. In addition, if $\operatorname{dim}(R) \leq 1$, then R s.t.w.r.f. A domain R is called divided domain if every prime ideal of R is comparable to every principal ideal of R. We showed that divided domains satisfy the weakly radical formula. Also, we investigate under which conditions $\operatorname{wrad}_{M}(N)=\operatorname{rad}_{M}(N)$ for a submodule N of M.

MSC 2010: 13C99, 13A99, 13G05
Keywords: Prime submodule, weakly prime submodule, weakly radical formula, divided domains

References

[1] A. Azizi, Radical formula and prime submodules. Journal of Algebra. 307 (2007), 454-460; doi:10.1016/j.jalgebra.2006.07.006.
[2] A. Azizi, Radical formula and weakly prime submodules. Glasgow Mathematical Journal of Trust. 51 (2009), 405-412; doi:10.1017/S0017089509005072.
[3] M. Behboodi, H. Koohy, Weakly prime modules. Vietnam Journal of Mathematics. 32 (2004), no. 2, 185-195.
[4] A. Badawi, On domains which have prime ideals that are linearly ordered. Communications in Algebra. 23 (1995), no. 12, 4365-4373; doi:10.1080/00927879508825469.
[5] E. Yılmaz, S.K. Cansu, Baer's lower nilradical and classical prime submodules. Bulletin of the Iranian Mathematical Society. 40 (2014), no. 5, 1263-1274.

An overview of twistor theory

AKRAM CHEHRAZI
Van Yüzüncü Yıl University, Van, Turkey
email: achehrazi95@gmail.com

Twistor theory studies physical information on a complex projective space which is called twistor space. It was first proposed by Roger Penrose in 1967. This theory has attracted great attention in mathematical physics recently and it approaches to quantum gravity. In this paper, we review twistor space of four-dimensional Minkowski space. In this order, we briefly mention about double cover of proper Lorentz transformation which is called SL(2,C). Then, we study Clifford algebra and essential fundamental concepts identifying complex Minkowski space with Weyle spinor space, and finally we describe the geometric structure of twistor space and compare some properties between spacetime and twistor space.

MSC 2010: 32L25, 14D2, 83C60
Keywords: Twistor theory, Algebraic geometry, General relativity, Quantum theory, Clifford algebra

References

[1] R. Penrose, Twistor algebra. J. Math. Phys. 64 (1967), 345.
[2] E. Witten, Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252 (2004), 189-258.
[3] S. A. Huggett, K. P. Tod, An Introduction to Twistor Theory. London Mathematical Society, Cambridge University Press, 1985.
[4] R. S. Ward, R. O. Wells, Twistor Geometry and Field Theory. Cambridge University Press, 1990.
[5] T. Adamo T. Twistor actions for gauge theory and gravity. Ph.D. thesis, University of Oxford, 2012.
[6] M. G. Eastwood, R. Penrose, R. O. Wells, Cohomology and Massless Fields. Commun. Math. Phys. 78 (1981), 305-351.

QSPR investigation of leap Randić index of octanes

IDRIS CIFTCI
Van Yuzuncu Yil University, Van, Turkey
email: idrisc25@hotmail.com

Topological indices are used in QSPR studies modeling structural properties of molecules. Zagreb indices were used modeling π-electron energy levels of alternant hydrocarbons. Randić index was used modeling molecular branching which was defined after Zagreb indices. These both indices are the most used topological indices in chemical literature. Leap Zagreb indices have been defined recently as parallel to Zagreb indices by using 2-distance degree notion (connection number) in graph theory. Several QSPR studies show that leap Zagreb indices are possible tools in quantitative structure property relationship studies. Leap Randić index defined as "the product connectivity index" by using 2-distance degree notion (connection number). We firstly analyze the applicability of this index in view of QSPR studies by using some chemical properties of octanes. We show that leap Randić index give low correlation for the chemical properties of octanes. Also leap Randić index has low relationship with Randić index. We conclude that leap Randić index is not a possible tool for QSPR studies.

MSC 2010: 05C92, 05C09, 05C12
Keywords: : QSPR studies, leap Randić index, leap Zagreb indices, Connection number

On k-total distance degrees and related indices of graphs

IDRIS CIFTCI ${ }^{1}$, SULEYMAN EDIZ ${ }^{2}$
1,2 Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ idrisc25@hotmail.com, ${ }^{2}$ suleymanediz@yyu.edu.tr

This study investigates the relationship between classical degree and recently defined k-distance degree, ve-degree and ev-degree concepts in graph theory. We firstly define the k-total distance degree notion and investigate its relation with Zagreb and Wiener polarity indices. One of the main relation is $W_{3}^{*}(T)=\frac{1}{2} M_{1}(T)+W_{p}(T)$ where $W_{3}^{*}(T), M_{1}(T)$ and $W_{p}(T)$ denotes 3-total Wiener polarity index, the first Zagreb index and Wiener polarity index, respectively for any tree T.

MSC 2010: 05C92, 05C09, 05C12
Keywords: k-total distance degree, Wiener polarity index, k-total Wiener polarity index

Eigen gaps to decide on graph convolutional network architecture

MUSTAFA COŞKUN

Abdullah Gül University, Kayseri, Turkey
email: mustafa.coskun@agu.edu.tr
With the advent of artificial intelligence techniques, a large volume of deep learning-based methods have been developed for various real world applications. Among these methods, Graph Convolutional Network (GCN) [1] has been attracted much research attention; owing to its outstanding performances on graph related tasks, such as link prediction, node classification, and etc. The basic premise behind GCN is to propagate the features of nodes in a graph based on the graph's topological associativity and then transfer the resulting matrix by using a non-linear function, such as Rectified Linear Unit (ReLU) and a neural network to reduce the dimension of the matrix. More formally, Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a graph, \mathbf{A} is its adjacency matrix representation, and $\hat{\mathbf{L}}_{\text {sym }}$ be its Laplacian matrix to encode its associativity. Furthermore, let $\mathbf{F} \in \mathbb{R}^{n \times d}$ denotes the feature matrix of the graph. In essence, GCN uses the following propagation rules:

$$
\begin{equation*}
\mathbf{H}=\operatorname{Re} L U\left(\widehat{\mathbf{L}}_{s y m} \operatorname{Re} L U\left(\widehat{\mathbf{L}}_{s y m} \mathbf{F} \Theta^{(\mathbf{0})}\right) \boldsymbol{\Theta}^{(\mathbf{1})}\right), \tag{1}
\end{equation*}
$$

where $\boldsymbol{\Theta}^{(0)}$ and $\Theta^{(1)}$ are trainable weight matrices. These weight parameters are trained using the following loss function:

$$
\begin{equation*}
\mathcal{L}=\underset{\boldsymbol{\Theta}^{(0)}, \boldsymbol{\Theta}^{(1)}}{\operatorname{minimize}}\left\|\mathbf{A}-\sigma\left(\mathbf{H} \times \mathbf{H}^{T}\right)\right\|, \tag{2}
\end{equation*}
$$

where σ denotes logistic sigmoid function. Later, it has been shown that using the second order proximity matrices, such as \mathbf{A}^{2}, instead of the Laplacian matrix $\hat{\mathbf{L}}_{s y m}$ as a propagation matrix can improve GCN's performance on link prediction tasks [2]. However, among many second order proximity matrices, which second order proximity should be used for better link prediction performance is still ambiguous and depends on the given dataset.

In this paper, to decide which proximity matrices should be used for which dataset, we argue that the gap of two leading eigenvalues can be a good indicator. Experimental results of these eigen-gap analyses show that we can use eigen-gaps for a priory knowledge to decide which proximity matrices should be used in GCN neural network architecture.

MSC 2010: 68R10, 68T05, 47J10
Keywords: Graph convolution network, embedding, eigenvalue gaps

References

[1] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representation (ICLR), 2017.
[2] M. Coşkun, M. Koyutürk, Node similarity-based graph convolution for link prediction in biological networks. Bioinformatics, 37 (23) (2021), pp. 4501-4508.

Spectral singularities of the Sturm-Liouville equations with a non-standard density function

NIMET COSKUN
Karamanoglu Mehmetbey University, Karaman, Turkey
email: cannimet@kmu.edu.tr

In this paper, we shall study the spectral properties of the Sturm-Liouville type differential operator with a non-standard density function. Spectral singularities of the Sturm-Liouville equations with a complex potential has been investigated in detail for the first time by Naimark [1]. Later, spectral singularities of the non-selfadjoint operators has been investigated for continuous and discrete cases. For detailed information, the interested reader may consult to the papers $[2,3,4]$ and the references therein. For the first time in literature, in this paper, we make use of hyperbolic type representations of the fundamental solutions to obtain the quantitative properties of the spectral singularities. We also obtain the Jost function which is analytic in the left-complex half plane.

MSC 2010: 39A70, 47A10, 47A75
Keywords: Spectral singularities, spectral theory, resolvent operator, eigenvalues, discrete spectrum

References

[1] M. A. Naimark, Linear differential operators. Part II: Linear differential operators in Hilbert space. Frederick Ungar Publishing Company, 1968.
[2] E. Bairamov, O. Cakar, A. M. Krall, An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities. Journal of Differential Equations 151 (1999), no. 2, 268-289.
[3] N. Yokus, N. Coskun, Jost solution and the spectrum of the discrete sturm-liouville equations with hyperbolic eigenparameter. Neural. Parallel, and Scientific Computations 24 (2016), 419-430.
[4] E. Bairamov, N. Yokus, Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions. Abstract and Applied Analysis 2009 (2009); doi:10.1155/2009/289596.

Bifurcation scheme of multi-layer flows on various wave velocities

GÖKÇEN ÇEKİÇ
Başkent University, Ankara, Turkey
email: gcoztek@baskent.edu.tr

The hydrodynamics of a multi-layer flow have attracted the attention of many researchers because of the wealth and variety of waves which develop on multiphase interfaces. Besides experimental studies, the modelling of the problem has been widely studied in the literature but modelling of direct numerical simulations have been limited for moving faster wave families on various layer thicknesses for stationary film thickness. The bifurcation analyse of multi-layer flows with free surface is investigated by using approximate wave model. Calculations have been carried out to generate the bifurcation scheme which shows the families of various wave velocities. Examples of nonlinear wave shapes are illustrated at real-life values.

MSC 2010: 35Q30, 76A20, 76D05, 76D33
Keywords: Fluid dynamics, multi-layer flows, thin films, waves, bifurcation

On a solvable system of difference equations with constant coefficients

AYFER ÇETE ${ }^{1}$, YASİN YAZLIK ${ }^{2}$
1,2 Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
emails: ${ }^{1}$ ayferdoganc@gmail.com ${ }^{2}$ yyazlik@nevsehir.edu.tr

The investigations of this study are concerned with the following three-dimensional system of difference equations

$$
\begin{aligned}
x_{n} & =\frac{y_{n-1} y_{n-2}}{x_{n-1}\left(\alpha+\beta y_{n-1} y_{n-2}\right)} \\
y_{n} & =\frac{z_{n-1} z_{n-2}}{y_{n-1}\left(\gamma+\delta z_{n-1} z_{n-2}\right)}, n \in \mathbb{N}_{0} \\
z_{n} & =\frac{x_{n-1} x_{n-2}}{z_{n-1}\left(\epsilon+\zeta x_{n-1} x_{n-2}\right)}
\end{aligned}
$$

where the parameters $\alpha, \beta, \gamma, \delta, \epsilon, \zeta$ and the initial values $x_{-i}, y_{-i}, z_{-i}, i \in\{1,2\}$. In particular, we show that the general solution to system of difference equations are obtained in closed form and the asymptotic behavior of well-defined solutions to the aforementioned system is investigated by using the solutions obtained.

MSC 2010: 39A10, 39A20, 39A23
Keywords: Closed form, system of difference equations, long-term

References

[1] S. Stević, B. Iričanin and Z. Šmarda, On a close to symmetric system of difference equations of second order. Adv. Differ. Equ. 2015, (2015), no. 264.
[2] E. O. Alzahrani, M. M. El-Dessoky, E. M. Elsayed and Y. Kuang, Solutions and properties of some degenerate systems of difference equations. J. Comput. Anal. Appl. 18 (2015), no. 2, 321-333.
[3] M. Kara, Y. Yazlik and D. T. Tollu, Solvability of a system of higher order nonlinear difference equations. Hacettepe Journal of Mathematics and Statistics 49 (2020), no. 5, 1566-1593.
[4] M. Kara and Y. Yazlik, On the system of difference equations $x_{n}=\frac{x_{n-2} y_{n-3}}{y_{n-1}\left(a_{n}+b_{n} x_{n-2} y_{n-3}\right)}, y_{n}=$ $\frac{y_{n-2} x_{n-3}}{x_{n-1}\left(\alpha_{n}+\beta_{n} y_{n-2} x_{n-3}\right)}$. J. Math. Ext. 14 (2020), no. 1, 41-59.
[5] M. Kara and Y. Yazlik, Solvability of a system of nonlinear difference equations of higher order. Turkish J. Math. 43 (2019), no. 3, 1533-1565; doi:10.3906/mat-1902-24.
[6] D. T. Tollu, Y. Yazlik, and N. Taskara, Behavior of positive solutions of a difference equation. Journal of Applied Mathematics छ Informatics 35 (2017), no. 3-4, 217-230.

Examination of preservice mathematics teachers' written expression skills for geometric objects: Student diaries

PAKİZE ÇETİN ${ }^{1}$, OKAN KUZU ${ }^{2}$
1,2 Kırşehir Ahi Evran University, Kırşehir, Turkey
emails: ${ }^{1}$ pitacetin@gmail.com; ${ }^{2}$ okan.kuzu@ahievran.edu.tr

Education is seen as an important force that causes change and development in the world, and for this reason, a rapid change and development process is experienced in line with the needs in education as in every field. Developed countries have seen student diaries as a means of making written communication a part of mathematics learning, describing mathematical ideas, clarifying the areas that need improvement and developing positive attitudes towards mathematics. The written expression skills of preservice mathematics teachers on the subject of geometric objects within the scope of geometry learning were examined under the subtitles of being able to define, using concepts and using mathematical language. It was aimed to investigate preservice teachers' written expression skills by using the student diaries for geometric objects. This study, which is based on the qualitative research approach, was carried out at the 2021-2022 academic year. The participants of the study consisted of preservice teachers studying in the primary school mathematics teaching department of a state university in the Central Anatolia Region. In the research, qualitative data obtained from student diaries were analyzed by content analysis method. When the findings of written expression skills were examined, it was determined that the candidates mostly preferred to use verbal expressions and were weak in using mathematical language. On the other hand, it was seen that the candidates were able to associate the related concept with daily life.

MSC 2010: 97D30, 97D40, 97D60, 97G80
Keywords: Student diaries, written expression skills, geometric objects
Acknowledgement: This study was produced from the master thesis of the first author under the supervision of the second author.

Quasilinearization method for a generalized initial-value problem on the time scale

SAHAP ÇETİN ${ }^{1}$, YALÇIN YILMAZ ${ }^{2}$, COŞKUN YAKAR ${ }^{3}$
${ }^{1,2}$ Sakarya University, Sakarya, Turkey
${ }^{3}$ Gebze Technical University, Kocaeli, Turkey

emails: ${ }^{1}$ beratuzunalioglu@gmail.com; ${ }^{2}$ yalciny@sakarya.edu.tr; ${ }^{3}$ cyakar@gtu.edu.tr
Quasilinearization technique coupled with the method of lower and upper solutions provides an explicit analytic representation for the solution of nonlinear differential equation which yields pointwise upper and lower estimates for the solution of the problem.

In this paper, we have applied the well-known quasilinearization method to a given nonlinear differential equations on time scale. So, it was seen that similar results were obtained, parallel to the results obtained by applying this method for a nonlinear differential equation given by the classical derivative. Namely, we have constructed monotone squences which converge uniformly and monotonically to the unique solution of the original problem under some conditions. The most important advantage of this method is that each element of the monotone function sequence is the solution of linear differential equations. Also, it has been shown that the convergence is quadratic.

MSC 2010: 34A12, 34A45, 34C11
Keywords: Quasilinearization, quadratic convergence, comparison theorem, time scale, lower and upper solutions

References

[1] R. Bellman, R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problem. American Elsevier, New York, 1965.
[2] M. Bohner, A. Peterson, Advances in dynamic equations on time scales. Birkhauser Boston, Inc., 2003.
[3] S. Hilger, Analysis on measure chains a unified approach to continuous and discrete calculus. Results in Mathematics 18 (1990), no. 1-2, 19-56.
[4] B. Kaymakçalan, Existence and Comparison results for dynamic systems on time scale. Journal of Mathematical Modelling and Algorithms 172 (1993), 243-255.
[5] V. Lakshmikantham, A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems. Kluwer Academic Publisher, The Netherlands, 1998.

Explicit and recursive formulas for Kirchhoff index of graphs via integer sequences such as generalized Fibonacci numbers

ZÜBEYİR ÇINKIR

Abdullah Gul University, Kayseri, Turkey.
email: zubeyir.cinkir@agu.edu.tr

Kirchhoff index of graphs can be computed by using either the eigenvalues of its Laplacian matrix or effective resistances between any two vertices. In both cases, finding explicit values is a complicated task in general. We use circuit reductions to derive recursive relations for various classes of graphs including ladder graphs [1] and prism graphs [2]. Solving the involved recursive relations enables us to obtain explicit formulas for the Kirchhoff indexes of those graphs. As a byproduct, we obtain recursive and explicit formulas for trigonometric sums. As an example, we derive the following equalities

$$
\sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{k \pi}{n}\right)}=\frac{2 n G_{n}^{2}}{G_{2 n}-2 G_{n}},
$$

where the sequence of integers G_{n} is defined recursively as follows:

$$
G_{n+2}=4 G_{n+1}-G_{n}, \quad \text { if } n \geq 2, \text { and } G_{0}=0, G_{1}=1
$$

For any positive integer n, we have

$$
\sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{k \pi}{n}\right)}=\frac{n}{\sqrt{3}}\left[\frac{2}{1-(2-\sqrt{3})^{n}}-1\right]
$$

MSC 2010: 05C12, 05C30, 05C50, 11B39, 11L03, 15A18, 94C15.
Keywords: Kirchhoff index, effective resistance, generalized Fibonacci numbers, prism graph, ladder graph, mesh graph
Acknowledgement: This work is supported by Abdullah Gul University Foundation.

References

[1] Z. Cinkir, Effective Resistances and Kirchhoff index of Ladder Graphs. J. Math. Chem. 54 (2016), no. 4, 955-966; doi:10.1007/s10910-016-0597-8.
[2] Z. Cinkir, Effective Resistances and Kirchhoff Index of Prism Graphs. arXiv:1704.03429.
[3] R. B. Bapat and S. Gupta, Resistance distance in wheels and fans. Indian J. Pure Appl. Math. 41 (2010), no. 1, 1-13; doi:10.1007/s13226-010-0004-2.

Approximation properties of a generalization of Szász-Beta operators

ÖZGE DALMANOĞLU

Baskent University, Ankara, Turkey
email: odalmanoglu@baskent.edu.tr
In the present paper we examine the approximation properties of a generalization of Szász-Beta operators. We first analyze the approximation properties of the newly constructed operators by means of the Korovkin's theorem and then we give the rate of convergence results. Lastly we obtain a Voronovskaya type theorem.

MSC 2010: 41A25, 41A29, 41A30
Keywords: Szász-Beta operators, Korovkin's theorem, rate of convergence, Voronovskaya theorem

References

[1] Ç. Atakut, İ. Büyükyazıcı, Approximation by modified integral type Jakimovski-Leviatan operators. Filomat 30 (2016), no. 1, 29-39.
[2] A. Ciupa, A class of integral Favard-Szász type operators. Studia Universtatis Babeş-Bolyai Mathematica 40 (1995), no. 1, 39-47.
[3] B. Çekim, R. Aktaş and G. İçöz, Kantorovich-Stancu type operators including Boas-Buck type polynomials. Hacettepe Journal of Mathematics and Statistics 48 (2019), no. 2, 460-471.
[4] A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P.P. Korovkin. Doklady Akademii Nauk SSSR 218 (1974), 1001-1004. (transl.in Sov. Math. Dokl. 15: 1433-1436.)
[5] G. İçöz, H. Eryiğit, Beta generalization of Stancu-Durrmeyer operators involving a generalization of Boas-Buck type polynomials. Gazi Univ. J. Sci. 33 (2020), 715-724.
[6] M. Mursaleen, A. H. Al-Abied and A. M. Acu, Approximation by Chlodowsky type of Szász operators based on Boas-Buck-type polynomials. Turkish Journal of Mathematics 42 (2018), no. 5, 2243-2259.
[7] M. Sidharth, P. N. Agrawal, S. Araci, Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type. Journal of Inequalities and Applications 2017 (2017), no. 1, 122.
[8] S. Sucu, G. İ̧̇öz and S. Varma, On Some Extensions of Szász Operators Including Boas-BuckType Polynomials. Abstract and Applied Analysis 2012 (2012) 15 pages.
[9] O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval. Journal of research of the National Bureau of Standards, Section B. 45 (1950), 239-245.

New infinite classes of Laplacian borderenergetic graphs

CAHIT DEDE

Selçuk University, Konya, Turkey
email: cahitdede@gmail.com

Let G be a graph of order n. G is said to be L-borderenergetic if its Laplacian energy is as same as the complete graph K_{n}, i.e. $L E(G)=2(n-1)$. In the paper [1], we proved 36 infinite classes of L-borderenergetic graphs. In this paper, we extend these classes and present 3 new infinite L borderenergetic graphs Θ_{1}, Θ_{2}, and Θ_{3} as composition of the cycle graphs under the operators product, union, join and complements. Let C_{t} be the cycle graph of order t and K_{1} be the graph of single point. Then the graphs in the following 3 infinite classes are Laplacian borderenergetic.

1. $\Theta_{1}=\left\{G=\overline{r K_{1} \times \prod_{i=1}^{k} r_{i} C_{t_{i}}}\right.$ of order $n_{1}=r \prod_{i=1}^{k} r_{i} t_{i}$ for $r=1,2, \ldots, k=1,2, \ldots, r_{i}=1,2, \ldots$, $\left.t_{i}=1,2, \ldots, i=1,2, \ldots\right\}$.
2. $\Theta_{2}=\left\{G=\overline{r K_{1} \times \bigcup_{i=1}^{k} r_{i} C_{t_{i}}}\right.$ of order $n_{2}=r \sum_{i=1}^{k} r_{i} t_{i}$ for $r=1,2, \ldots, k=1,2, \ldots, r_{i}=1,2, \ldots$, $\left.t_{i}=1,2, \ldots, i=1,2, \ldots\right\}$.
3. $\Theta_{3}=\left\{G=\overline{r K_{1} \times V_{i=1}^{k} r_{i} C_{t_{i}}}\right.$ of order $n_{3}=r \sum_{i=1}^{k} r_{i} t_{i}$ for $r=1,2, \ldots, k=1,2, \ldots, r_{i}=1,2, \ldots$, $\left.t_{i}=1,2, \ldots, i=1,2, \ldots\right\}$.

MSC 2010: 05C50, 05C76, 15A18
Keywords: Graph spectrum, Laplacian matrix, borderenergetic graph
Acknowledgement: I would like to thank my supervisor Ayşe Dilek Maden for her support during preparation of this paper.

References

[1] C. Dede and A. D. Maden, Garden of Laplacian Borderenergetic Graphs. MATCH Commun. Math. Comput. Chem. 86 (2021) 597-610.

Some comparisons between the effects of planar and corrugated interfaces of a layer sandwiched between two half spaces on SH wave propagation

EKIN DELIKTAS-OZDEMIR ${ }^{1}$, AYSE PEKER DOBIE ${ }^{2}$
${ }^{1}$ Piri Reis University, Istanbul, Turkey
${ }^{2}$ Istanbul Technical University, Istanbul, Turkey
emails: ${ }^{1}$ edeliktas@pirireis.edu.tr; ${ }^{2}$ pdobie@itu.edu.tr

In this study, the effects of periodic and planar boundary surfaces of the layer sandwiched between two elastic half spaces on the SH wave propagation are compared. The constituent materials of the half-spaces and the layer are assumed to be different, homogeneous, isotropic and incompressible. It is also assumed that corrugations of the interfaces are slowly varying functions of the distance in the direction of wave propagation. Numerical evaluation of the first branch of each dispersion relation has been performed for the following cases

- planar upper interface-periodic lower interface,
- periodic upper interface-planar lower interface,
- periodic upper interface-periodic lower interface

The variations of phase velocity and wave number of the waves with the direction of the wave propagation for each case mentioned above are presented graphically and the results are compared.

MSC 2010: 00A69, 35-XX, 35B20
Keywords: SH waves, corrugated surfaces, perturbation methods

Crumbling modules as injectivity domains

YILMAZ MEHMET DEMIRCI

Abdullah Gül University, Kayseri, Turkey
emails: yilmaz.demirci@agu.edu.tr

Poor modules are introduced in [1] as an opposite of injectivity. The first wave in this line of research has focused mainly on the rings with no middle class (over which every right module is either poor or injective). In one of such studies, the authors related the existence of semisimple poor modules to the coincidence of the class of all crumbling modules (exactly locally Noetherian V-modules) and the class of all semisimple modules (see [2]). [3] is one of the papers that consider rings that can have more than one middle class.

In this talk, we focus on the case when there is only one middle class of injectivity domains. Especially, we investigate the properties of the rings that have the class of crumbling modules as their only middle class of injectivity domains.

MSC 2010: 16D50, 16D70, 16D80
Keywords: Injective module, poor module, modest module, SSI-ring, V -ring, WV -ring, Noetherian ring

References

[1] A. N. Alahmadi, M. Alkan and S. López-Permouth, Poor modules: The opposite of injectivity. Glasgow Math.J. 52 (A) (2010), 7-17.
[2] N. Er, S. López-Permouth and N. Sökmez, Rings whose modules have a maximal or minimal injectivity domains. J. Algebra 330 (2011), 404-417.
[3] Y. M. Demirci, B. Nişancı Türkmen and E. Türkmen, Rings with modules having a restricted injectivity domain. São Paulo J. Math. Sci. 14 (2020), 312-326.

Lacunary statistical convergence of multiset sequences

NİHAL DEMİR ${ }^{1}$, HAFİZE GÜMÜŞs ${ }^{2}$
1,2 Necmettin Erbakan University, Konya, Turkey
emails: ${ }^{1}$ nihaldemircise@gmail.com; ${ }^{2}$ hgumus@erbakan.edu.tr

Statistical convergence developed rapidly after being defined independently by Fast and Steinhaus in 1951 and was studied in many fields. One of them, lacunary statistical convergence, was defined by Fridy and Orhan in 1993. On the other hand, although there are various studies on multisets, which are sets that can repeat elements, the convergence of multisets was defined by Pachilangode in 2021.

In this study, lacunary statistical convergence of multiset sequences is examined and releated examples and theorems are given.

MSC 2010: 40G15, 40A35
Keywords: Multiset sequences, statistical convergence, lacunary sequence

References

[1] W. D. Blizard, The Development of Multiset Theory. Modern Logic 1 (1991), 319-352.
[2] S. Debnath and A. Debnath, Statistical Convergence of Multisequences on R. Applied Sciences 23 (2021), 17-28.
[3] H.Fast, Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
[4] J. A. Fridy and C. Orhan, Lacunary Statistical Convergence. Pacific Journal of Math. 160 (1993), no. 1, 44-51.
[5] S. Pachilangode and S. C. John, Convergence of Multiset Sequences. Journal of New Theory 34 (2021), 20-27.

The nabla z-transform

CEYDA DEMİREL
Çankaya University, Ankara, Turkey
email: ceyda1006@gmail.com

In this work, we propose the nabla z-transform, denoted by Z_{∇}, for solving linear nabla difference equations. Through this novel approach, we derive the nabla z-transform of some basic functions that compose parts of the mentioned difference equations and use these results to solve some nabla difference initial value problems.

MSC 2010: 34N05, 26D10, 26D15
Keywords: Nabla z-transform, difference equation

Artinian analogues of some Noetherian modules over complete semi-local commutative Noetherian rings

İSMAİL HAKKI DENİZLER
Van Yüzüncü Yıl University, Van, Turkey
email: ismailhd@yyu.edu.tr

The goal of this research is to come up with a version of some well-known lemmas that applies to Artinian modules. We create an extension of Matlis duality that applies to a complete semilocal Noetherian ring to prove the Artinian case; this allows us to switch back and forth between Noetherian and Artinian modules. This technique is combined with the completeness of R (the ring over which we construct modules) in relation to R-module A to demonstrate how various Artinian module findings can be inferred from well-known classical Noetherian conclusions. Matlis' classical duality was created for a complete local Noetherian ring at first. We take use of this fact.

MSC 2010: 13E10, 13E05
Keywords: Artinian rings and modules, finite dimensional algebras, Noetherian modules

References

[1] E. Matlis, Injective modules over Noetherian rings. Pacific J. Math. 8 (1958), 511-528.
[2] R. Y. Sharp, Artinian modules over commutative rings. Math. Proc. Camb. Phil. Soc. 111 (1992), 25-33.
[3] R. Y. Sharp, Steps in Commutative Algebra. Cambridge University Press, 2000.
[4] D. W. Sharpe and P. Vámos, Injective Modules. Cambridge University Press, 1972.

Upper bounds for the blow up time for the Kirchhoff-type equation

YAVUZ DİNÇ ${ }^{1}$, ERHAN PİŞKİN ${ }^{2}$, CEMİL TUNÇ
${ }^{1}$ Mardin Artuklu University, Mardin, Turkey
${ }^{2}$ Dicle University, Diyarbakır, Turkey
${ }^{3}$ Van Yüzüncü Yıl University, Van, Turkey

emails: ${ }^{1}$ yavuzdinc@artuklu.edu.tr; ${ }^{2}$ episkin@dicle.edu.tr; ${ }^{3}$ cemtunc@yahoo.com
In this presentation, we consider the Kirchhoff type equation with variable exponent. This type problem has been widely used in many mathematical models of various applied sciences such as flows of electro-rheological fluids, thin liquid films, etc. We prove the upper bound for blow up time under suitable conditions.

MSC 2010: 35B44, 35L10, 46E35
Keywords: Blow up, Kirchhoff-type equation, variable exponent

References

[1] S.A. Messaoudi,, A.A. Talahmeh,, J.H. Al-Shail, Nonlinear damped wave equation: Existence and blow-up. Comp. Math. Appl. 74 (2017), 3024-3041.
[2] A. Ouaoua, M. Maouni, Blow-up, exponential grouth of solution for a nonlinear parabolic equation with p(x)-Laplacian. Int.J. Anal. Appl. 17 (2019), 620-629.
[3] E. Pişkin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents. Int. J. Nonlinear Anal. Appl. 11 (2020), 37-45.

New oscillation/ nonoscillation criteria for impulsive differential equations with discontinuous solutions

SİBEL DOGRU AKGÖL

Atılım University, Ankara, Turkey
email: sibel.dogruakgol@atilim.edu.tr

There is a vaste amount of literature on oscillation/ nonoscillation of the classical self adjoint ordinary differential equation

$$
\begin{equation*}
\left(p(t) x^{\prime}\right)^{\prime}+q(t) x=0 . \tag{1}
\end{equation*}
$$

In particular, Moore [2] and Hille [3] obtained some oscillation/ nonoscillation criteria involving the integrals

$$
p_{1}(t)=1+\int_{a}^{t} \frac{\mathrm{~d} s}{p(s)}, \quad p_{0}(t)=\int_{t}^{\infty} \frac{\mathrm{d} s}{p(s)} .
$$

In the present work, our aim is to obtain generalizations of the Moore's and Hille's results, and some of their improved modifications for impulsive differential equations having discontinuous solutions.

MSC 2010: 34B15, 34B37, 34A37
Keywords: oscillation/ nonoscillation, impulsive, discontinuous

References

[1] W. Leighton, On self-adjoint differential equations of second order. J. London Math. Soc.27 (1952), 37-47.
[2] R. A. Moore, The behavior of solutions of a linear differential eqution of second order. Pacific J. Math. 5 (1955), 125-145.
[3] E. Hille, Non-oscillation theorems. Trans. Amer. Math. Soc. 64 (1948), 234-252.

A first countable Hausdorff topology induced by a quasi-uniformity

HÜLYA DURU ${ }^{1}$, SERKAN İLTER ${ }^{2}$, AYGÜL BILGİN 3
1,2 İstanbul University, İstanbul, Turkey
${ }^{3}$ Haliç University, İstanbul, Turkey

emails: ${ }^{1}$ hduru@istanbul.edu.tr; ${ }^{2}$ ilters@istanbul.edu.tr; ${ }^{3}$ aygulbilgin@halic.edu.tr
A quasi-uniform structure on a nonempty set X is a filter $\mathfrak{U}_{\mathfrak{q}} \subseteq P(X \times X)$ satisfying the following conditions:
(QU1) Each element $U \in \mathfrak{U}_{q}$ includes the set $D=\{(x, x) \mid x \in X\}$,
(QU2) For every $U \in \mathfrak{U}_{q}$, there exists $V \in \mathfrak{U}_{q}$ such that $V \circ V \subseteq U$.
The pair $\left(X, \mathfrak{U}_{q}\right)$ is called a quasi-uniform space.
In this talk, we define a first-countable Hausdorff topology on the space (X, \mathfrak{F}, t) induced by a quasi-uniformity, where $\mathfrak{F}: X \times X \rightarrow \Delta$ is a function satisfying the following conditions;
(U1) $\mathfrak{F}_{x x}=\epsilon_{0}$
(U2) $\mathfrak{F}_{x z}\left(k_{1}+k_{2}\right) \geq t\left(\mathfrak{F}_{x y}\left(k_{1}\right), \mathfrak{F}_{y z}\left(k_{2}\right)\right)$, for all $k_{1}, k_{2}>0$
(U3) $\sup \{t(a, a) \mid a<1\}=1$
Here Δ denotes the set regarding distribution functions
MSC 2010: 54E15, 54E70, 54E99
Keywords: Probabilistic metric space, quasi-uniform space, distribution functions

References

[1] W. . Pervin, Quasi-Uniformization of Topological Spaces. Math. Annalen 147 (1962), 316-317.
[2] B. Schweizer and A. Sklar, Probabilistic Metric Spaces. Elsevier Science Publishing Co., Inc., 1983.
[3] B. Schweizer and A. Sklar, Statistical Metric Spaces. Pacific Journal of Mathematics 10 (1960), no. 1.
[4] P. Fletcher, F. L. William, Lecture Notes in Pure and Applied Mathematics, Quasi-Uniform Spaces. CRC Press, 1982.
[5] J. L. Kelley, General Topology. Springer, 1975.
[6] W. J. Pervin, Foundations of General Topology. Academic Press INC., 1964.

Almost continuity and almost compactness in graded ditopological texture spaces

RAMAZAN EKMEKÇİ
Kırklareli University, Kırklareli, Turkey
email: rekmekci@klu.edu.tr

In the theory of graded ditopology, openness and closedness are given by independent grading functions instead of elements of a texture as in ditopological case. So, in this structure, the notion of ditopology on a texture is fuzzified in a sense.

In this talk, the concepts of almost (bi)continuous difunction and almost (di)compactness in graded ditopological texture spaces are introduced and some of their properties are investigated. Also the relation between almost (di)compactness in graded ditopological texture spaces and both almost (di)compactness in ditopological texture spaces and near (di)compactness in graded ditopological texture spaces are studied.

MSC 2010: 54D30, 54A05, 54A40
Keywords: Almost compactness, almost continuity, graded ditopology

References

[1] L. M. Brown, M. Diker, Ditopological texture spaces and intuitionistic sets. Fuzzy Sets and Systems 98 (1998), 217-224.
[2] L. M. Brown, R. Ertürk, Ş. Dost, Ditopological texture spaces and fuzzy topology, I. Basic concepts. Fuzzy Sets and Systems 147 (2004), no. 2, 171-199.
[3] L. M. Brown, A. P. Šostak, Categories of fuzzy topology in the context of graded ditopologies on textures. Iran. J. Fuzzy Syst. 11 (2014), no. 6, 1-20.
[4] R. Ekmekçi, A Tychonoff theorem for graded ditopological texture spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 69 (2020), no. 1, 193-212.
[5] M. Gohar, Compactness in ditopological texture spaces. PhD Thesis, Hacettepe University, Ankara, 2002.

Nonnegative bias reduction methods for density estimation using scaled inverse chi-squared kernel estimator

ELİF ERÇELİK ${ }^{1}$, MUSTAFA NADAR ${ }^{2}$
1,2 Istanbul Technical University, Istanbul, Turkey
emails: ${ }^{1}$ ercelikel@itu.edu.tr; ${ }^{2}$ nadar@itu.edu.tr

The problem of estimating the unknown probability density function (pdf) of a univariate random variable X has been the subject of research for a long time. Standard kernel estimators were developed primarily for the densities with unbounded support using a symmetric pdf as a kernel. However, symmetric kernel estimators cause a boundary bias problem when used to fit densities with compact or semi-infinite support. This problem occurs because the kernel assigns positive weights outside the support when smoothing applied near the boundary. Thus, the asymmetric kernel estimators have been proposed as a good alternative way for avoiding these boundary effects. It is known that, the bias of asymmetric kernel estimators is $O(b)$ as $b \rightarrow 0$ under sufficient differentiability conditions. In this work, two classes of multiplicative bias correction (MBC) methods, originally proposed for density estimation using symmetric second order kernels, are extended to asymmetric Scaled Inverse Chi-Squared (SCI) density estimator to achieve the rate improvements. It is shown that, under sufficient smoothness of the true density, both MBC techniques reduce the order of magnitude in bias, while the order of magnitude in variance remains unchanged. In this case, the bias convergence leads to faster mean squared error and mean integrated squared error convergence rates for both MBC estimators compared to the classical SCI kernel estimator. Simulation studies are performed to compare the performance of the two MBC estimators and classical SCI estimators and then a real data set is presented to illustrate the findings.

MSC 2010: 62G05, 62G07, 41A25
Keywords: Density estimation, asymmetric kernel estimators, boundary bias problem, multiplicative bias correction method

Stability, boundedness and existence of periodic solutions of some fourth order non-linear differential equations with multiple delays

SULTAN ERDUR ${ }^{1}$, CEMİL TUNÇ ${ }^{2}$
${ }^{1}$ Gaziantep University, Gaziantep, Turkey
${ }^{2}$ Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ serdur82@gmail.com; ${ }^{2}$ cemtunc@yahoo.com

The aim of this work is to investigate stability, boundedness and existence of periodic solutions of some fourth order nonlinear differential equations with multiple delays by using the LyapunovKrasovski ${ }^{2}$ i functional approach. We gave an example to show applications of the given results. The given results are new and have contributions to the qualitative behaviors of solutions of higher order delay differential equations.

Subject Classification: 34C25, 34D05, 34D20
Keywords: Delay differential equation, stability, boundedness, existence of periodic solution, fourth order

References

[1] T. Yoshizawa, Stability theory by Liapunov's second method. The Mathematical Society of Japan 223 (1966).
[2] T. Yoshizawa, Stability theory and the Existence of Periodic Solutions and Almost Periodic Solutions. Springer-Verlag 223 (1975).
[3] H. O. Tejumola, Tchegnani, Stability, boundedness and existence of periodic solutions of some third and fourth order nonlinear delay differential equations. J. Nigerian Math. Soc. 19 (2000), no. 3, 9-19.
[4] C. Tunç, On the stability of solutions to a certain fourth-order delay differential equation. Nonlinear Dynam. 51 (2008), no. 1-2, 71-81.
[5] C. Tunç, Some remarks on the stability and boundedness of solutions of certain differential equations of fourth-order. Comput. Appl. Math. 26 (2007), no. 1, 1-17.

On stability of linear difference systems

SARE BUSE ERSU

Çankaya University, Ankara, Turkey
email: buse.ersu@gmail.com
Systems of linear difference equations being equivalent to a vector equation are considered and when the coefficient matrix is constant, the solutions of the corresponding homogeneous equations are shown to be varying according to the multiplicities of the eigenvalues of the coefficient matrix being greater than one or not. Furthermore, the developed techniques in determining these solutions are employed to describe and illustrate various stability criteria of solutions of the above explained systems.

MSC 2010: 34N05, 26D10, 26D15
Keywords: Linear difference equation systems, stability

Cofinitely $s s$-lifting modules

FİGEN ERYILMAZ
Ondokuz Mayıs University, Samsun, Turkey
email: fyuzbasi@omu.edu.tr

An R-module M is named cofinitely semisimple lifting or briefly cofinitely $s s$-lifting if for each cofinite submodule S of M, M has a decomposition $M=U^{\prime} \oplus V$ such that $U^{\prime} \subseteq S$ and $S \cap V \subseteq \operatorname{Soc}_{s}(V)$. In this study, equivalent conditions to this definition are given. In addition, the basic features of this concept defined in this article are examined.

MSC 2010: 16D10, 16D60, 16D99
Keywords: Cofinitely ss-lifting module, cofinitely weak ss-lifting module, ss-lifting module, weak $s s$-lifting module

References

[1] F. Erylmaz, SS-lifting modules and rings. Miskolc Math. Notes 22 (2021), no. 2, 655-662; doi:10.18514/MMN.2021.3245.
[2] E. Kaynar, E. Turkmen and H. Çalışıcı, SS-supplemented modules. Commun. Fac. Sci. Univ. Ank. A1 Math. Stat. 69, (2020), 473 - 485; doi:10.31801/cfsuasmas.585727.
[3] D. Keskin, On lifting modules. Comm. Algebra 28 (2000), no. 7, 3427-3440; doi:10.1080/00927870008827034.
[4] E.Ö. Sözen, A study on $S s$-semilocal modules in view of singularity, Malaya J. Math. 10,(2022), no.1, 90-97; https://doi.org/10.26637/mjm1001/008.
[5] R. Tribak, On cofinitely lifting and cofinitely weak lifting modules. Comm. Algebra 36 (2008), no. 12, 4448-4460; doi:10.1080/00927870802179552.
[6] Y. Wang and D. Wu, On cofinitely lifting modules. Algebra Colloq. 17 (2010), no. 4, 659-666; doi:10.1142/S1005386710000635.
[7] R. Wisbauer, Foundations of Module and Ring Theory. A handbook for study and research. Gordon and Breach, Science Publishers, 1991.

An operator-theoretic setting of singly-generated invariant subspaces in the polydisc

BEYAZ BASAK ESKISEHIRLI

Istanbul University, Istanbul, Turkey
email: basakoca@istanbul.edu.tr

The structure of invariant subspaces of the Hardy space on the unit disc are very well known; however, in several variables, the structure of the invariant subspaces of the classical Hardy spaces is not yet fully understood. In this talk, we completely characterize the structure of singly-generated invariant subspaces of the Hardy space on the polydisc using the well-known Beurling-Lax-Halmos Theorem. As a result of our characterization, it is also obtained the structure of Beurling-type invariant subspaces in the polydisc.

MSC 2010: 47A15, 32C15
Keywords: Hardy spaces, invariant subspaces, operator valued function, polydisc

Optimal control on the MHD mixed convection flow with transverse magnetic field

CANSU EVCİN

Tekirdağ Namik Kemal University, Tekirdağ, Turkey
email: cbilgir@nku.edu.tr

Optimal control of the steady, laminar, magnetohdrodynamics (MHD) mixed convection flow of an electrically conducting fluid is considered under the effect of transverse magnetic field in a square duct. The viscous and Joule dissipations are included and the flow is driven by a constant pressure gradient. The tripled nonlinear set of momentum, induction and energy equations are solved in dimensionless form by using mixed finite element method (FEM) with the implementation of Newton's method for nonlinearity with discretize-then-linearize approach. Accordingly, FEM solutions are obtained for various values of the problem parameters to ensure the efficiency of the underlying scheme.

This study aims to investigate the problem of controlling the steady flow by using the physically significant parameters of the problem as control variables [1,2] in the case of a mixed convection flow [3]. In this respect, classification of the type of the convection, forced or free, is achieved by controlling the Grashof number (Gr). Besides, single and pairwise controls with Hartmann number (M), Prandtl number (Pr) and magnetic Reynolds number (Rm) are also used to regain the prescribed fluid behaviors and required magnetic field. Control simulations are conducted with Sequential-Least-Squares-Programming (SLSQP) algorithm in the optimization.

MSC 2010: 65N30, 90C53, 93C20
Keywords: MHD, Optimal control, FEM

References

[1] C. Evcin, Ö. Uğur and M.Tezer Sezgin, Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and Hall effects. Computers $\mathcal{E}^{\mathcal{B}}$ Mathematics with Applications 76 (2018), no. 6, 1338-1355; doi:10.1016/j.camwa.2018.06.027.
[2] C. Evcin, Ö. Uğur and M.Tezer Sezgin, Controlling the power-law fluid flow and heat transfer under the external magnetic field using the flow index and the Hartmann number. International Journal of Computational Methods 17 (2020), no. 03, 1850143; 10.1142/S0219876218501438.
[3] M. Chutia, P. N. Deka, Numerical study on MHD mixed convection flow in a vertical insulated square duct with strong transverse magnetic field. Journal of Applied Fluid Mechanics 8 (2015), no. 3 473-481.

A logarithmic barrier interior point method for linear programming

BOUTHEINA FELLAHI ${ }^{1}$, BACHIR MERIKHI ${ }^{2}$
${ }^{1,2}$ University Ferhat Abbas, Setif, Algeria
emails: ${ }^{1}$ boutheina.fellahi@univ-setif.dz; ${ }^{2}$ bmerikhi@univ-setif.dz

Interior point methods are one of the efficient methods developed to solve linear, semidefinite and nonlinear programming problems. In this paper, we particularly propose a logarithmic barrier interior point method for solving a linear constrained programming problem, the logarithmic barrier function used is given by $-\sum_{i=1}^{n} \ln \left(x_{i}\right)$ where $r>0$. We ensure the convergence when r tends to zero. Various approaches are developed to calculate the step size. In our work we present a comparative numerical study between a majorant function technique and a tangent technique for calculate the step size t along a Newton descent direction d.

The linear programming studied in this paper is defined as follows:

$$
\left\{\begin{array}{c}
\min b^{t} z \tag{P}\\
A^{t} z \geq c \\
z \in \mathbb{R}^{n}
\end{array}\right.
$$

In which: $A \in \mathbb{R}^{m \times n}$ is a full rank matrix $(m<n), b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.
MSC 2010: $90 \mathrm{C} 05,90 \mathrm{C} 25,90 \mathrm{C} 51$
Keywords: Linear constrained programming, interior point methods, search line, majorant function, tangent technique

References

[1] J. P. Crouzeix, B. Merikhi, A logarithm barrier method for semidefinite programming. RAIRO Oper Res. 42 (2008), 123-139.
[2] L. B. Cherif, B. Merikhi, A penalty method for nonlinear programming. RAIRO Oper Res. 53 (2019), 29-38.
[3] L. Menniche, D. Benterki, A logarithmic barrier approach for linear programming. J. Comput. Appl. Math. 312 (2017), 267-275,

On automorphisms of symmetric polynomials of noncommutative algebras

ŞEHMUS FINDIK
Çukurova University, Adana, Turkey
email: sfindik@cu.edu.tr

A polynomial in the set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ of (nonnecessarily commutative) variables is called symmetric if it is preserved under any change of elements of X_{n}. It is well known that the set of such polynomials form the algebra of invariants of the symmetric group in the corresponding relatively free algebra generated by X_{n}. In the current study, we consider the algebra of symmetric polynomials of some certain relatively free noncommutative algebras and describe their automorphisms.

MSC 2010: 17B01, 17B30, 17B40
Keywords: Automorphism, noncommutative, symmetric polynomial

References

[1] Yu. A. Bahturin, Identical Relations in Lie Algebras (Russian), Nauka, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987
[2] M. C. Wolf, Symmetric functions of non-commutative elements. Duke Math. J. 2 (1936), no. 4, 626-637; doi: 10.1215/S0012-7094-36-00253-3

The Voronovskaja type theorem for a class of Kantorovich type operators associated with the Charlier polynomials I

KEREM GEZER ${ }^{1}$, MİNE MENEKŞE YILMAZ ${ }^{2}$
${ }^{1,2}$ Gaziantep University, Gaziantep, Turkey
emails: ${ }^{1}$ keremgezer27@gmail.com; ${ }^{2}$ menekse@gantep.edu.tr

In this study, initially, we give a generalization of Kantorovich type linear positive operators that includes Charlier polynomials. Secondly, we present the moments of these operators and then prove their uniform convergence using Bohman-Korovkin's theorem for convergence of these operators towards the identity operator. In addition to the above mentioned, we give the Voronovskaja type formula with the classic method to measure the effectiveness of approximation.

MSC 2010: 41A10, 41A25, 30E10
Keywords: Charlier polynomials, Voronovskaja type theorem, Kantorovich type operators, positive operators

References

[1] D. Miclaus, The Voronovskaja type theorem for the Szász-Mirakjan-Kantorovich operators. Journal of Science and Arts 2 (2010), no. 13, 257-260.
[2] D. Miclaus, O. T. Pop, and D. Barbosu, The Voronovskaja type theorem for an extension of Kantorovich operators. Annals of the University of Craiova-Mathematics and Computer Science Series 37 (2010), no. 4, 29-36.
[3] S. Varma and F. Taşdelen, Szász type operators involving Charlier polynomials. Mathematical and Computer Modelling 56 (2012), no. 5-6, 118-122.
[4] A. Kajla and P.N. Agrawal, Szász-Kantorovich type operators based on Charlier polynomials. Kyungpook Mathematical Journal 56 (2016), no. 3, 877-897.
[5] A. Wafi and N. Rao, On Kantorovich form of generalized Szász-type operators using Charlier polynomials. The Korean Journal of Mathematics 25 (2017), no. 1, 99-116.
[6] A. Ayik, Charlier polinomlarını içeren genelleştirilmiş Szasz operatörlerinin Kantrovich tipi genelleştirilmesi. Master's thesis, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, 2018.

New qualitative criteria to certain vector differential equations of second order

MELEK GÖZEN

Van Yuzuncu Yil University, Van, Turkey
email: melekgozen2013@gmail.com

This paper considers a certain class of nonlinear vector differential equations of second-order. Qualitative properties of solutions of the considered equations called stability, asymptotic stability, uniform stability, boundedness and uniformly boundedness of solutions are investigated. Four new theorems related to the mentioned qualitative concepts are proved by using the second method of Lyapunov. Examples are given to show applicability of the results. By this paper, we generalize and improve some results that are available in the literature.

Subject Classification: 34K20, 34K06, 34K40
Keywords: Differential equations, stability, second order, Lyapunov functional, boundedness

References

[1] C. Tunç, Boundedness of solutions of a third-order nonlinear differential equation. J. Inequal. Pure Appl. Math. 6 (2005), no. 1, Article 3, 6 pp.
[2] C. Tunç, M. Ateş, Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dynam. 45 (2006), no. 3-4, 273-281.
[3] C. Tunç, On the stability and boundedness of solutions of nonlinear vector differential equations of third order. Nonlinear Anal. 70 (2009), no. 6, 2232-2236.
[4] M. O. Omeike, O. O. Oyetunde, A. L. Olutimo, Boundedness of solutions of certain system of second-order ordinary differential equations. Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 53 (2014), 107-115.
[5] M. O. Omeike, A. A. Adeyanju, D. O. Adams, A. L. Olutimo, Boundedness of certain system of second order differential equations. Kragujevac J. Math. 45 (2021), no. 5, 787-796.

A new class of $m-(p, q)$-Bernoulli polynomials

GHANIA GUETTAI ${ }^{1}$, MOURAD RAHMANI ${ }^{2}$
${ }^{1}$ University Yahia Farès Médéa, Médéa, Algeria
${ }^{2}$ USTHB, Algiers, Algeria
emails: ${ }^{1}$ guettai78@yahoo.fr; ${ }^{2}$ mrahmani@usthb.dz

The main object of this talk is to give an interesting formula for calculating a new class of $m-(p, q)$-Bernoulli numbers and polynomials which is presented on three-term recurrence formula. This class of numbers and polynomials result from the Gaussian hypergeometric function and its properties. We provide some explicit formulas in terms of m-Stirling numbers and the weighted Stirling numbers of the second kind.

MSC 2010: 11B68, 11B73, 33C05
Keywords: Bernoulli numbers, Stirling numbers, Gaussian hypergeometric function, three-term recurrence formula

References

[1] M. A. Boutiche, G. Guettai, M. Rahmani and M. Sebaoui. A three-term recurrence formula for the generalized Bernoulli polynomials. Bol. Soc. Parana. Mat. 39 (2021), no. 6, 139-145.
[2] A. Z. Broder, The r-Stirling numbers. Discrete Math. 49 (1984), no. 3, 241-259; doi: 10.1016/0012-365X(84)90161-4.
[3] L. Kargin, Some formulae for products of geometric polynomials with applications. J. Integer Seq. 20 (2017), no. 4, 17.4.4, 15.
[4] M. A. Pathan, Unified (p,q)-Bernoulli-Hermite polynomials. Fasc. Math. (2018), no. 61, 125-141.
[5] M. Rahmani, Generalized Stirling transform. Miskolc Math. Notes. 15 (2014), no. 2, 677-690; doi: $10.18514 / \mathrm{mmn}$.2014.1084.
[6] M. Rahmani, On p-Bernoulli numbers and polynomials. J. Number Theory. 157 (2015), 350-366; doi:10.1016/j.jnt.2015.05.019.

A fully discrete scheme for singularly perturbed semilinear integro-differential equations with two integral boundary conditions

BARANSEL GUNES ${ }^{1}$, MUSA CAKIR ${ }^{2}$
1,2 Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ baranselgunes23@gmail.com; ${ }^{2}$ cakirmusa@hotmail.com

This paper purposes to present a discrete scheme for the singularly perturbed semilinear mixed integro-differential equation including integral boundary conditions. Initially, some analytical properties of the solution are given. Then, using the composite numerical integration formulas and implicit difference rules, the finite difference scheme is established on a uniform mesh. Error approximations for the approximate solution and stability bounds are investigated in the discrete maximum norm. Finally, a numerical example is solved to show ε-uniform convergence of the suggested difference scheme.

MSC 2010: 34D15, 65L10, 65L12, 65L20, 65L70
Keywords: Discrete scheme, error bounds, integral boundary condition, integro-differential equation, singular perturbation

References

[1] M. Cakir and D. Arslan, A new numerical approach for a singularly perturbed problem with two integral boundary conditions. Computational and Applied Mathematics 40 (2021), no. 6, 1-17.
[2] J. Huang, Z. Cen, A. Xu and L-B. Liu, A posteriori error estimation for a singularly perturbed Volterra integro-differential equation. Numerical Algortihms 83 (2019), 549-563; doi:10.1007/s11705-019-00693-y.
[3] M. Kudu, I. Amirali and G. M. Amiraliyev, A finite difference method for a singularly perturbed delay integro-differential equations. Journal of Computational and Applied Mathematics 308 (2016), 379-390; doi:10.1016/j.cam.2016.06.018.

On the analysis of a model with Holling type-III functional response consisting of super predator, intermediate predator and prey

BETÜL GÜDÜK İBRAHİMOĞLU ${ }^{1}$, MUSTAFA TAYLAN ŞENGÜL ${ }^{2}$
1,2 Marmara University, İstanbul, Türkiye
emails: ${ }^{1}$ betul.guduk@marun.edu.tr; ${ }^{2}$ taylan.sengul@marmara.edu.tr

In this study, a model consisting of an upper predator, intermediate predator and prey populations is discussed.

$$
\begin{align*}
& \frac{d R}{d T}=r R\left(1-\frac{R}{K}\right)-\frac{\alpha_{1} R^{2} N}{\beta_{1}+R^{2}}-\frac{\alpha_{2} R^{2} P}{\beta_{2}+R^{2}} \tag{1}\\
& \frac{d N}{d T}=\frac{e_{1} \alpha_{1} R^{2} N}{\beta_{1}+R^{2}}-\frac{\frac{\alpha_{3}}{1+R} N^{2} P}{\beta_{3}+N^{2}}-\gamma_{1} N^{2}-\eta_{1} N P-D_{1} N \tag{2}\\
& \frac{d P}{d T}=\frac{e_{2} \alpha_{2} R^{2} P}{\beta_{2}+R^{2}}+\frac{e_{3} \frac{\alpha_{3}}{1+R} N^{2} P}{\beta_{3}+N^{2}}-\gamma_{2} P^{2}-\eta_{2} N P-D_{2} P \tag{3}
\end{align*}
$$

In order to address the diversity in the behaviour of these populations, the upper predator may feed on both intermediate predator and prey. Earlier studies had examined Holling type 1 and Type 2 functional response modeling in an ecosystem consisting of these three species. In this study, Holling Type 3 functional response is considered where predation saturates as the number of prey species exceeds a certain number. The existence of possible equilibrium points of the system and their local stability are investigated. Numerical simulations are conducted to explain the theoretical results.

MSC 2010: 34Dxx, 37N25, 34Cxx
Keywords: Prey switching, functional response, Holling Type III, equilibrium point, global stability

References

[1] S.G. Mortoja, P. Panja, A. Paul, S. Bhattacharya, S. K. Mondal, Is the intermediate predator a key regulator of a tri-trophic food chain model? : An illustration through a new functional response. Chaos, Solitons \mathcal{E}^{2} Fractals 132, (2020), no. 109613; doi:10.1016/j.chaos.2020.10961309600779/

On the Perrin hybrid quaternions

KÜBRA GÜL
Kafkas University, Kars, Turkey
email: kubra.gul@kafkas.edu.tr

A quaternion is defined [3] by $q=a_{0}+a_{1} i+a_{2} j+a_{3} k$, where $a_{0}, a_{1}, a_{2}, a_{3}$ are real numbers and i, j, k are quaternionic units. Several authors studied on different quaternions and their generalizations, some of which can be found in $[1,2,4]$. A new set of numbers called hybrid numbers are defined in [5] as a generalization of dual numbers, complex numbers and hyperbolic numbers. Since then, the hybrid numbers have been a topic of interest, and some new classes of quaternions and sequences have been studied in $[1,6,7]$. Inspired by these works, we define a new type of quaternions called Perrin hybrid quaternions. We give recurrence relations, Binet-like formulas, generating functions, exponential generating functions and some properties for these quaternions. Then we also define a associate matrix for these quaternions. By the means of this matrix, we also give several identities of these quaternions. We obtain matrix representations of these quaternions by Matlab and calculate determinants of quaternion matrices with Matlab applications.

MSC 2010: 11B39, 11K31, 11Y55, 11R52
Keywords: Recurrence sequence, Perrin number, hybrid number, quaternion

References

[1] A. Dağdeviren and F. Kürüz, On the Horadam hybrid quaternions. https://arXiv.2012.08277 (2020).
[2] K. Gül, Dual bicomplex Horadam quaternions. Notes on Number Theory and Discrete Mathematics 26 (2020), no. 4, 187-205.
[3] W. R. Hamilton, Elements of quaternions. Longmans, Green and Co., London, 1866.
[4] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions. Math. Mag. 70 (1963), no. 3, 289-291.
[5] M. Özdemir, Introducion to hybrid numbers. Adv. Appl. Clifford Algebra 28 (2018), no. 1, 11-32.
[6] M. Uysal, E. Özkan, Padovan hybrid quaternions and some properties. Journal of Science and Arts 22 (2022), no. 1, 121-132.
[7] R. Vieira, M. Mangueira, F. R. Alves and P. M. M. Cruz Catarino, Padovan and Perrin Hybrid Number Identities. Communications in Advanced Mathematical Sciences 4 (2021), no. 4, 190-197.

Introduction to Grey models

RABİA GÜLERYÜZ ${ }^{1}$, BURAK UYAR ${ }^{2}$
1,2 Van Yüzüncü Yil University, Van, Turkey
emails: ${ }^{1}$ rabia.kilic2910@gmail.com; ${ }^{2}$ burak.uyar@yyu.edu.tr

Grey system theory was introduced to find solutions to problems involving small sample and weak information. Its application areas have five components, namely Grey relational analysis (GRA), Grey modelling, Gray prediction, Grey control and Grey decision making. In the process of creating the grey prediction model, the original data is accumulated into a new data column with strong regularity and a new model is created. Then, the reduction model is created from this new data column by inverse operation and the final prediction model is obtained. The $\operatorname{GM}(1,1)$ model is the most widely used grey forecasting model. The grey model was developed to make inferences for future periods and to predict them based on the values of data from past periods. Today, many quantitative techniques are used for the estimation of time series. However, the important thing here is to keep the error rates that occur as a result of the predictions made by the techniques at a minimum level. In this sense, sometimes by modifying the error terms and sometimes by combining different techniques, it is tried to reduce the error rates and to obtain more accurate estimations. Because the plans made for the future and the policies that can be determined gain meaning only with these predictions. The lower the error rate, the higher the performance of the prediction model will be. With these in mind, $\operatorname{GM}(1,1)$ is one of the most commonly used Grey forecasting models. This model is a time series prediction model consisting of first order differential equations. The minimum number of data should be four to create the $\operatorname{GM}(1,1)$ model. In general, $\mathrm{GM}(\mathrm{n}, \mathrm{m})$ refers to the grey model. n is the number of n th order differential equations, m is the number of variables.

MSC 2010: 60G25, 34B60, 68U01
Keywords: Grey system theory, grey prediction, GM(1,1), grey control

A generalized form of ρ-statistical convergence of interval numbers

HAFİZE GÜMÜş
Necmettin Erbakan University, Konya, Turkey
email: hgumus@erbakan@edu.tr

Statistical convergence, which has been studied in many fields after the 1950s, was studied together with a $\rho=\left(\rho_{n}\right)$ sequence by Cakalli in 2017 [2] and this new concept was named ρ-statistical convergence. Later on, Aral, Kandemir and Et [1] studied ρ-statistical convergence for set sequences. Gumus defined ρ-statistical convergence for interval numbers.

In this study, we examine the concept of ρ-statistical convergence for interval numbers in a more general way using the $p=\left(p_{k}\right)$ sequence of positive real numbers.

MSC 2010: 40G35, 40A15
Keywords: Statistical convergence, ρ-statistical convergence, interval numbers

References

[1] N. D. Aral, H. Ş. Kandemir and M. Et, On ρ-statistical convergence of sequences of sets. Conference Proceeding Science and Technology 3 (2020), no. 1, 156-159.
[2] H. Çakallı, A variation on statistical ward continuity. Bull. Malays. Math. Sci. Soc. 40 (2017), 1701-1710.
[3] H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
[4] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets. Fasc. Math. 49 (2012), 87-99.
[5] M. Şengönül and A. Erylmaz, On the sequence spaces of interval numbers. Thai Journal of Mathematics 8 (2010), no. 3, 503-510.

Arithmetical reduction of classification problems of singular K3-surfaces

ÇİSEM GÜNEŞ AKTAŞ
Abdullah Gül University, Kayseri, Turkey
email: cisem.gunesaktas@agu.edu.tr

It has become quite clear that the classical approach to the classification problems of singular models of $K 3$-surfaces (such as sextics and quartics) based on the defining equations is bound to fail: even when the classification is known, it requires a tremendous amount of work to find an explicit equation of any given curve. Therefore, we use the more modern approach based on the K3-surfaces suggested in [6], [1], [2], which reduce the classification problem to a certain arithmetical problem concerning lattice extensions. Application of this $K 3$-theoretical approach has been limited by the huge number of classes and the necessity to compute the infinite orthogonal groups of indefinite lattices. We overcome this difficulty by the principal novelty of the computer aided usage of the Miranda-Morrison theory ([3], [4], [5]) which reduce the computation to the finite discriminant forms and make the whole problem almost algorithmical.

MSC 2010: 14H45, 14J28, 14H30, 14J10
Keywords: K3-surface, simple singularity, plane sextic, spatial quartic

References

[1] Alex Degtyarev, On deformations of singular plane sextics. J. Algebraic Geom. 17 (2008), no. 1, 101 - 135 .
[2] Alex Degtyarev and Ilia Itenberg, On real determinantal quartics. In: Pro-ceedings of the Gökova Geometry-Topology Conference, Int. Press, Somerville (2010), 110-128.
[3] Rick Miranda and David R. Morrison, The number of embeddings of integral quadratic forms. I. Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), no. 10, 317-320.
[4] Rick Miranda and David R. Morrison, The number of embeddings of integral quadratic forms. II. Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 1, 29-32.
[5] Rick Miranda and David R. Morrison, Embeddings of integral quadratic forms. electronic, http://www. math.ucsb.edu/ drm/manuscripts/eiqf.pdf, 2009.
[6] Jin-Gen Yang, Sextic curves with simple singularities. Tohoku Math. J. 48 (1996), no. 2, 203227.

Advanced refinements of Berezin number inequalities

MEHMET GÜRDAL ${ }^{1}$, HAMDULLAH BAŞARAN 2
${ }^{1,2}$ Süleyman Demirel University, Isparta, Turkey

emails: ${ }^{1}$ gurdalmehmet@sdu.edu.tr; ${ }^{2} 07$ hamdullahbasaran@gmail.com
For a bounded linear operator A on a reproducing kernel Hilbert space $\mathcal{H}(\Omega)$, with normalized reproducing kernel $\widehat{k}_{\eta}:=\frac{k_{\eta}}{\left\|k_{\eta}\right\|_{\mathcal{H}}}$, the Berezin symbol and Berezin number are defined respectively by $\widetilde{A}(\eta):=\left\langle A \widehat{k}_{\eta}, \widehat{k}_{\eta}\right\rangle_{\mathcal{H}}$ and $\operatorname{ber}(A):=\sup _{\eta \in \Omega}|\widetilde{A}(\eta)|$. A simple comparison of these properties produces the inequality $\operatorname{ber}(A) \leq \frac{1}{2}\left(\|A\|_{\text {ber }}+\left\|A^{2}\right\|_{\text {ber }}^{1 / 2}\right)$ (see [4]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on reproducing kernel Hilbert spaces.

MSC 2010: 47A30, 47A63
Keywords: Berezin symbol, Berezin number, reproducing kernel Hilbert space, positive operator

References

[1] F. A. Berezin, Covariant and contravariant symbols for operators. Math. USSR-Izvestiya 6 (1972), 1117-1151; doi:10.1070/IM1972v006n05ABEH001913.
[2] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators II. Studia Math. 182 (2007), no. 2, 133-140.
[3] M. T. Garayev, H. Guedri, M. Gürdal and G. M. Alsahli, On some problems for operators on the reproducing kernel Hilbert space. Linear Multilinear Algebra, 69 (2021), no. 11, 2059-2077; doi:10.1080/03081087.2019.1659220.
[4] M. B. Huban, H. Başaran and M. Gürdal, New upper bounds related to the Berezin number inequalities. J. Inequal. Spec. Funct. 12 (2021), no. 3, 1-12.
[5] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 158 (2003), 11-17; doi:10.4064/sm158-1-2.
[6] F. P. Najafabadi and H. R. Moradi, Advanced refinements of numerical radius inequalities. arXiv:2011.08443v4 [math.FA] 14 Jun 2021.
[7] R. Tapdigoglu, M. Gürdal, N. Altwaijry and N. Sarı, Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities. Oper. Matrices 15 (2021), no. 4, 1445-1460; doi:10.7153/oam-2021-15-90.

On designing discrete-time games from continuous-time models

ALİ HAMIDOĞLU
Bahçeşehir University, İstanbul, Turkey
email: ali.hamidoglu@eng.bau.edu.tr

A continuous-time game is a mathematical concept which is used in game theory where each player's course of action depends on a continuous dynamical process emerged from real and non-real life forms [1]. In other words, it extends the notion of a discrete-time game, a game in which each player's move is determined by a finite set of pure strategies in discrete-time. Hence, a continuoustime game model allows one to investigate more general sets of pure strategies, which may result in uncountably infinite. In this work, we study the connection between these two game models and design discrete-time platforms from the given continuous-time playing ground to achieve game ending scenarios for pursuit-evasion type game models in discrete-time. In recent literature, designing such game structures are studied in $[2,3,4,5,6,7]$ to deal with some real-world problems.

MSC 2010: 91A06, 91A10, 91A24, 91A50.
Keywords: Game theory, continuous-time system, discrete-time system, control, finite set

References

[1] R. Isaacs, A Mathematical Theory with Applications to Warfare and Pursuit: Differential Games. Wiley, New York (NY), 1965.
[2] A. Hamidoğlu, E. N. Mahmudov, Guarding problems in discrete control models. 7th International Conference on Control and Optimization with Industrial Applications (COIA) Baku, Azerbaycan 1 (2020), 191-193.
[3] A. Hamidoğlu, M.H. Taghiyev, G. W. Weber, On construction of pursuit-evasion games in discrete control models. Appl. Comput. Math. 21 (2022), no. 1, 52-60.
[4] A. Hamidoğlu, M. H. Taghiyev, G. W. Weber, On building two-player games with treatment schedules for the SIR model. Azerbaijan J Math. 11 (2021), no. 2, 183-195.
[5] A. Hamidoğlu, M. H. Taghiyev, On discrete game models with applications to management. International Conference on Management Science and Engineering Management, Springer, Cham, (2021), Aug. 1, 195-207; https://doi.org/10.1007/978-3-030-79203-9_15.
[6] A. Hamidoğlu, A novel one target game model in the life insurance market. Int. J. Manag. Sci. Eng. Manag. 16 (2021), no. 3, 221-228.
[7] A. Hamidoğlu, A game theoretical approach for finding near-optimal solutions of an optimization problem. Optimization (2022), 1-23; https://doi.org/10.1080/02331934.2022.2069024.

The detour index of graph products

ILHAM HASSI ${ }^{1}$, MOHAMED AMINE BOUTICHE ${ }^{2}$
1,2 LUSTHB University, Algiers, Algeria
emails: ${ }^{1}$ ilham.hassi1997@gmail.com; ${ }^{2}$ mboutiche@usthb.dz

The object of this paper is to investigate the detour index of some graph products. The detour index of a connected graph is defined as the sum of the detour distances (lengths of longest paths) between all pairs of vertices of the graph. The detour index is a well-known topological index, which is used in quantitative structure-activity relationship (QSAR) studies. In this paper, we establish expressions for the detour index of join and corona of some products of graphs.

MSC 2010: 05C12, 05C76, 05C30
Keywords: Detour index, join graphs, corona graphs, quasi-corona graphs, topological index, chemical graph theory

On commutant hypercyclicity and commutant transitivity of some operators

KARIM HEDAYATIAN ${ }^{1}$, MOHAMMAD NAMEGOSHAYFARD ${ }^{2}$
1,2 Shiraz University, Shiraz, Iran
emails: ${ }^{1}$ hedayati@shirazu.ac.ir; ${ }^{2}$ mna817@hotmail.com

Linear dynamics is a well-established topic of research that has experimented a great development in recent decades with two monographs [1] and [2]. In this presentation we will study commutant hypercyclicity and commutant trasitivity of operators. We will introduce some operators which are not commutant hypercyclic and next we will show that some operators are commutant hypercyclic but not commutant transitive. Furthermore, we will present the sufficient and necessary conditions for a vector to be a commutant hypercyclic vector.

MSC 2010: 47A16, 47B37, 47B99
Keywords: Commutant hypercyclicity, commutant transitivity, Hilbert spaces, operators

References

[1] F. Bayart, E. Matheron, Dynamics of linear operators. Cambridge Tracts in Mathematics, Vol. 179, Cambridge University Press, Cambridge, 2009.
[2] K-G. Grosse-Erdmann, A. P. Manguillot, Linear chaos. Springer-Verlag London Limited, London, 2011.

On fractional variable-order neural networks based on the Caputo derivative

AMEL HIOUAL ${ }^{1}$, ADEL OUANNAS ${ }^{2}$, TAKI EDDINE OUSSAEIF ${ }^{3}$, ZINEB LAOUAR 4
1,2,3 University of Larbi Ben M'hidi, Oum El Bouaghi, Algeria.
${ }^{4}$ Abdelhafid Boussouf University Center of Mila
emails: ${ }^{1}$ amel.hioual@univ-oeb.dz; ${ }^{2}$ ouannas.adel@univ-oeb.dz; ${ }^{3}$ taki_maths@live.fr;
${ }^{4}$ z.laouar@centre-univ-mila.dz

Because of its memory and heredity qualities, the results of merging neural networks with fractional calculus are very outstanding [1]. Yet, variableorder fractional operators were just recently established and formally described; however, due to their capacity to build evolutionary governing equations, these operators have been effectively employed to represent complex significant problems [2][3]. To that end, we investigate the existence, uniqueness, and stability of variable-order fractional neural network solutions in this paper. First, the Caputo variable-order fractional derivative will be included in the fractional-order neural networks. The existence and uniqueness of the proposed neural networks will next be demonstrated using fixed point theorems. Furthermore, we will use direct analytical approaches to examine Ulam-Hyers stability for variable-order fractional operators. Finally, two-dimensional example and simulations employing the Adams-Bashforth-Moulton schema [4] are shown to demonstrate our theoretical results.

MSC 2010: 26A33, 34K20, 45G15

Keywords: Variable-order fractional neural networks, Caputo varibale-order fractional derivative, Fixed point theorem, Ulam-Hyers stability

References

[1] C. Song, J. Cao, Dynamics in fractional-order neural networks, Neurocomputing. 142 (2014), 494-498; doi: 10.1016/j.neucom.2014.03.047.
[2] R. Almeida, D. Tavares, D. F. M Torres, The Variable-Order Fractional Calculus of Variation. Springer, 2019.
[3] R. M. Ganji, H. Jafari, S. Nemati, A new approach for solving integro-differential equations of variable order. Journal of Computational and Applied Mathematics. 379 (2020), 112946; doi: 10.1016/j.cam.2020.112946.
[4] H. G. Sun, A. Chang, Y. Zhou, W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22 (2019), no 1, 27-59; doi: 10.1515/fca-2019-0003.

Every gobal action defines a local equivalence relation

İLHAN İÇEN, ${ }^{1}$ ABDULLAH FATİH ÖZCAN ${ }^{2}$
1,2 İnönü University, Malatya, Turkey
emails: ${ }^{1}$ ilhan.icen@inonu.edu.tr; ${ }^{2}$ abdullah.ozcan@inonu.edu.tr

A global action is the algebraic analogue of a topological space. This structure was introduced in first place by A. Bak $[1,2]$ as a combinatorial approach to K-Theory and the concept was later generalized by Bak, Brown, Minian and Porter to the notion of groupoid atlas [3]. The notion of local equivalence relation was introduced by Grothendieck and Verdier [4] in a series of exercises presented as open problems concerning the construction of a certain kind of topos. It was investigated further by Rosenthal [5, 6] and more recently by Kock and Moerdijk [7] and in general case Brown and İçen [8]. In this paper we investigate that the notion of global action on a topological space defines a local equivalence relation.

MSC 2010: 18F25, 55N15, 55N99
Keywords: Global actions, local equiavalence relation, action

References

[1] A. Bak, Global actions: The Algebraic Counterpart of a Topological Space. Uspeki Mat. Nauk., English Translation: Russian Math. Surveys 525 (1997), 955-996. Journal of Homotopy and Related Structures 1 (2006), no. 1, 166.
[2] A. Bak, Topological Methods in Algebra. In: Rings, Hopf Algebras and Brauer Groups, M. Dekker, New York, (1998), no. 197 in Lect. Notes in Pure and Applied Math.
[3] A. Bak, R. Brown, E. G. Minian, T. Porter, Global Actions, Groupoid Atlases and Applications. Journal of Homotopy and Related Structures 1 (2006), 101-167.
[4] A. Grothendieck, J. L. Verdier, Théorie des topos (SGA, Vol. 1). Lectures Notes in Math., Vol. 269, Springer, Berlin, 1972.
[5] K. Rosenthal, Local equivalence relations. Topology Appl. 13 (1982), 167-176.
[6] A. Kock, I. Moerdijk, Spaces with Local Equivalence Relations, and Their Sheaves. Topology Appl. 72 (1996), 47-78.
[7] K. Rosenthal, Sheaves and Local Equivalence Relations. Cahiers Topologie Géom. Différentielle Catégoriques 25 (1984), 1-31.
[8] R. Brown, İ. İçen, Lie Local Subgroupoids and Their Lie Holonomy and Monodromy Groupoids. Topology Appl. 15 (2001), 125-138.

Applications of the piecewise derivative to real-world problems

SEDA İĞRET ARAZ
Siirt University, Siirt, Turkey
University of the Free State, QwaQwa, South Africa
email: sedaaraz@siirt.edu.tr

In this study, we deal with the usage of the piecewise derivative newly introduced by Atangana and Araz to simulate some real-world problems. This concept has been used to model different processes in different time periods and has been successfully applied in many disciplines such as chaos, epidemiology and mathematical biology. It can be seen that some previously simulated problems can be modified again with the help of piecewise derivatives. For example, the Van-Der Pol equation has been used to model heart rhythm before and many studies have been done by researchers. Imagine a person having a heart attack, and while before the heart attack this person's heart rhythm is normal, during a heart attack the heart rhythm will increase over time. If the treatment fails, this person will die and his heart will stop. While the Van-Der Pol equation cannot model these three processes by itself, this process can be described with the concept of piecewise derivative. This study will present some applications regarding the usability of the piecewise derivative concept in such processes. Since there are many problems in nature that exhibit different behaviors at such different times, we strongly believe that this new concept will open new doors in applications.

MSC 2010: 35A23, 65P20, 92D30
Keywords: Piecewise differential and integral operators, chaos, epidemiology

References

[1] A. Atangana, S. Igret Araz, New concept in calculus: Piecewise differential and integral operators. Chaos, Solitons $\xi^{\mathcal{G}}$ Fractals 145 (2021), 110638.
[2] A. Sohail, Z. Yu, R. Arif, A. Nutini, T. A. Nofal, Piecewise differentiation of the fractional-order CAR-T cells-SARS-2 virus model. Results in Physics 33 (2022).
[3] M. H. Heydari, A. Atangana, A numerical method for nonlinear fractional reaction-advectiondiffusion equation with piecewise fractional derivative. Mathematical Sciences (2022).
[4] A. Atangana, S. Igret Araz, Modeling third waves of Covid-19 spread with piecewise differential and integral operators: Turkey, Spain and Czechia. Results in Physics, 29 (2021).
[5] A. Atangana, S. Igret Araz, Rhythmic behaviors of the human heart with piecewise derivative. Mathematical Biosciences and Engineering 19 (2022), no. 3, 3091-3109.

A \mathbf{C}^{1} approximation on differential inclusions

SERKAN İLTER ${ }^{1}$, HÜLYA DURU ${ }^{2}$, SEYİT KOCA ${ }^{3}$, HAVVA NUR ÖZTÜRK ${ }^{4}$
1,2,3,4 İstanbul University, İstanbul, Turkey
emails: ${ }^{1}$ ilters@istanbul.edu.tr; ${ }^{2}$ hduru@istanbul.edu.tr; ${ }^{3}$ seyit.koca@ogr.iu.edu.tr;
${ }^{4}$ havvanurozturk04@gmail.com

For a given set-valued map $F:[0, T] \times \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}} \backslash\{\emptyset\}$ we consider the following differential inclusion

$$
\dot{x}(t) \in F(t, x(t)),
$$

where $T>0$.
In this study, we present some existence results about approximations of classical (i.e. continuously differentiable) solutions for the differential inclusion with initial condition $x(0)=x_{0}$. For this, we make use of Carathéodory type solutions, i.e. absolutely continuous functions x that satisfies the differential inclusion with the initial condition almost everywhere on $[0, T]$, and some results related to selection theorems for set-valued maps.

MSC 2010: 34A60, 34A12, 34A45
Keywords: differential inclusion, set-valued map, approximation, classical solution

References

[1] J. P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston, 1990.
[2] J. P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, Berlin, 1984.

On solutions of three-dimensional system of difference equations

MERVE KARA ${ }^{1}$, ÖMER AKTAŞㅗㅜ ${ }^{2}$
1,2 Karamanoglu Mehmetbey University, Karaman, Turkey emails: ${ }^{1}$ mervekara@kmu.edu.tr ${ }^{2}$ aktas.omer10@gmail.com

In this study, we show that the system of difference equations

$$
\begin{aligned}
x_{n} & =\frac{x_{n-2} y_{n-3}}{y_{n-1}\left(a+b x_{n-2} y_{n-3}\right)}, \\
y_{n} & =\frac{y_{n-2} z_{n-3}}{z_{n-1}\left(c+d y_{n-2} z_{n-3}\right)}, \quad n \in \mathbb{N}_{0}, \\
z_{n} & =\frac{z_{n-2} x_{n-3}}{x_{n-1}\left(e+f z_{n-2} x_{n-3}\right)},
\end{aligned}
$$

where the parameters a, b, c, d, e, f and the initial values $x_{-i}, y_{-i}, z_{-i}, i \in\{1,2,3\}$ are non-zero real numbers, can be solved in the explicit form. In addition, we define the forbidden set of the initial conditions by using the obtained formulas. Finally, we get periodic solutions of aforementioned system.

MSC 2010: 39A10, 39A20, 39A23
Keywords: Explicit form, System of difference equations, forbidden set
Acknowledgement: The authors are grateful to Karamanoglu Mehmetbey University Scientific Research Council (BAP no. 13-YL-22).

References

[1] H. El-Metwally and E. M. Elsayed, Solution and behavior of a third rational difference equation. Util. Math. 88 (2012), 27-42.
[2] T.F. Ibrahim and N. Touafek, On a third order rational difference equation with variable coefficients. Dyn. Discrete Impuls. Syst. Ser. B Appl. Algorithms 20 (2013), 251-264.
[3] A. M. Ahmed and E. M. Elsayed, The expressions of solutions and the periodicity of some rational difference equations systems. J. Appl. Math. Inf. 34 (2016), no. 1-2, 35-48; doi:10.14317/jami.2016.035.
[4] M. Kara and Y. Yazlik, On the system of difference equations $x_{n}=\frac{x_{n-2} y_{n-3}}{y_{n-1}\left(a_{n}+b_{n} x_{n-2} y_{n-3}\right)}, y_{n}=$ $\frac{y_{n-2} x_{n-3}}{x_{n-1}\left(\alpha_{n}+\beta_{n} y_{n-2} x_{n-3}\right)}$. J. Math. Ext. 14 (2020), no. 1, 41-59.
[5] M. Kara and Y. Yazlik, Solvability of a system of nonlinear difference equations of higher order. Turkish J. Math. 43 (2019), no. 3, 1533-1565; doi:10.3906/mat-1902-24.
[6] M. Kara and Y. Yazlik, On a solvable system of non-linear difference equations with variable coefficients. J. Sci. Arts. 1 (2021), no. 54, 145-162; doi:10.46939/J.Sci.Arts-21.1-a13.

Stability and bifurcation analysis of a COVID-19 mathematical model on Erdős Rényi network

NERİMAN KARTAL
Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
email: nerimangok@nevsehir.edu.tr;

In this study, a mathematical model consisting of conformable fractional order differential equations is proposed to describe COVID-19 dynamics. By applying a discretization procedure based on the use of piecewise constant arguments to the model a system of difference equations is obtained. By using the Schur-Cohn criterion, necessary and sufficient conditions are obtained for asymptotic stability of a positive equilibrium point of the discrete system. Bifurcation analysis shows that Neimark-Sacker bifurcation occurs around the positive equilibrium point due to the changing the parameter d and e in the system. Moreover calculating maximum Lyapunov exponents exhibit chaotic structures in discrete dynamical system. In addition, the COVID-19 mathematical model consisting of healthy and infected populations is also studied on the Erdős Rényi network. If the coupling strength reaches the critical value then transition from nonchaotic to chaotic state is observed in complex dynamical networks. Finally,all theoretical results are supported by numerical simulations.

MSC 2010: 39A28, 39A30, 92B20, 37N25
Keywords: Piecewise constant arguments, difference equation, stability, Neimark-Sacker bifurcation, complex network

References

[1] E. G. Nepomuceno and M. Perc, Computational chaos in complex networks. J. Complex. Netw. 8 (2012), cnz015; doi:10.1093/comnet/cnz015.
[2] M. Awais, F. S. Alshammari, S. Ullah, M. A. Khan and S. Islam, Modeling and simulation of the novel coronavirus in Caputo derivative. Results. Phys. 19 (2020), 103588; doi:10.1016/j.rinp.2020.103588.
[3] X. Lia, G. Chen and K. G. Ko, Transition to chaos in complex dynamical networks. Phys A: Stat. Mech. Appl. 338 (2004), 367-378; doi:10.1016/j.physa.2004.02.010.
[4] G. Kaya, S. Kartal and F. Gurcan, Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm. Phys A: Stat. Mech. Appl. 547 (2020), 123864; doi:10.1016/j.physa.2019.123864.

Different bounds for degree Kirchhoff index

GÜLİSTAN KAYA GÖK

Hakkari University, Hakkari, Turkey
email: gulistankayagok@hakkari.edu.tr
Let G be a simple, connected (molecular) graph with the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The distance $d_{i j}$ is the number of edges of shortest path between vertices v_{i} and v_{j} in G. If G is a connected (molecular) graph then the minimum and maximum degree will be represented by δ and Δ, respectively. The degree Kirchhoff index of G is explained as a new index $K f^{\prime}(G)=2 m \sum_{i=0}^{n-2} \frac{1}{\rho_{i}^{\prime}}$ in [4] and [7]. In this paper, some new bounds for degree Kirchhoff index.

Let G be a connected graph of order $n>3$ and t spanning trees then

$$
\begin{equation*}
K f(G) \geq \frac{2 m}{\Delta+1}+\frac{2 m(n-1)}{n-3}\left(\frac{(\Delta+1)^{\frac{n-3}{n-1}}}{(n t(G))^{\frac{n-2}{n-1}}}-\frac{1}{(n t(G))^{\frac{1}{n-1}}}\right) . \tag{1}
\end{equation*}
$$

with equality holding if and only if $G \cong K_{n}$.
MSC 2010: 05C10, 05C92
Keywords: Graph, degree, Kirchhoff index

References

[1] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs. Academic press, New York, 1980.
[2] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities. Springer, Berlin, 1970.
[3] F. R. K. Chung, Spectral Graph Theory.CBMS Lecture Notes, Providence, 1997.
[4] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum. Dis. Appl. Math. 155 (2007), 654-661.
[5] H. Y. Zhu, D. J. Klein, I. Lukovits, Extensions of the Wiener number. J. Chem. Inf. Comput. Sci. 36 (1996), 420-428.
[6] I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci. 36 (1996), 982-985.
[7] I. Ž. Milovanović, E. I. Milovanović, E. Glogić, Lower bounds of the Kirchhoff and degree Kirchhoff index. Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics 7 (2015), 25-31.
[8] I. Ž. Milovanović, E. I. Milovanović, On some lower bounds of the Kirchhoff index. MATCH Commun. Math. Comput. Chem. 78 (2017) 169-180.

Novel delta and nabla Pachpatte type inequalities via convexity

ZEYNEP KAYAR ${ }^{1}$, BİLLUR KAYMAKÇALAN ${ }^{2}$
${ }^{1}$ Van Yüzüncü Yıl University, Van, Turkey
${ }^{2}$ Çankaya University, Ankara, Turkey

emails: ${ }^{1}$ zeynepkayar@yyu.edu.tr; ${ }^{2}$ billurkaymakcalan@gmail.com
Nabla Pachpatte type dynamic inequalities are obtained via convexity to unify the results established for the special cases, which are continuous and discrete cases. By this unification, delta Pachpatte type dynamic inequalities are established as well. Some of the obtained inequalities are nabla counterparts of their delta versions while the others are new even for the discrete, continuous and delta cases.

MSC 2010: 34N05, 26D10, 26D15
Keywords: Time scale calculus, Pachpatte inequality, Hardy inequality, convexity

Diamond-alpha Pachpatte type dynamic inequalities

BİLLUR KAYMAKÇALAN ${ }^{1}$, ZEYNEP KAYAR ${ }^{2}$
${ }^{1}$ Çankaya University, Ankara, Turkey
${ }^{2}$ Van Yüzüncü Yıl University, Van, Turkey
emails: ${ }^{1}$ billurkaymakcalan@gmail.com; ${ }^{2}$ zeynepkayar@yyu.edu.tr
Diamond-alpha Pachpatte type dynamic inequalities are obtained via convexity to unify the results established for the special cases, which are delta and nabla calculi. The obtained inequalities are novel not only for the diamond-alpha calculus but also for these special cases. Moreover the method of the proof of the theorems is different from the proofs in the special cases because the Integration by Parts Formula and the Fundamental Theorem of Calculus, which are the main tools for the proofs of the theorems in the delta and nabla approaches, do not exist in the diamond-alpha calculus.

MSC 2010: 34N05, 26D10, 26D15
Keywords: Diamond-alpha time scale calculus, Pachpatte inequality, Hardy inequality, convexity

On oscillation of solutions of advanced differential equations

NURTEN KILIÇ
Kütahya Dumlupınar University, Kütahya, Turkey
email: nurten.kilic@dpu.edu.tr

In this study, the linear advanced differential equations

$$
x^{\prime}(t)-p(t) x(\tau(t))=0
$$

and nonlinear advanced differential equations

$$
x^{\prime}(t)-p(t) f(x(\tau(t)))=0
$$

are investigated, where $p, \tau \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), \tau(t) \geq t$ and $\lim _{t \rightarrow \infty} \tau(t)=\infty$ and $x f(x)>0$ and $f \in C(\mathbb{R}, \mathbb{R})$ for $x \neq 0$. Furthermore, the oscillatory conditions of these equations are presented. Finally, some examples are given to illustrate the results.

MSC 2010: 34C10, 34G20, 34K11
Keywords: Advanced differential equations, monotone argument, nonmonotone argument, nonoscillatory solution, oscillatory solution

References

[1] G. E Chatzarakis, Ö. Öcalan, Oscillations of differential equations with several non-monotone advanced arguments. Dyn. Syst. 30 (2015), 310-323.
[2] N. Fukagai, T. Kusano, Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl. 136 (1984), 95-117.
[3] M. R. Kulenovic, M. K. Grammatikopoulos, Some comparison and oscillation results for first order differential equations and inequalities with a deviating argument. J. Math. Anal. Appl. 131 (1988), 67-84.
[4] T. Kusano, On even order functional-differential equations with advanced and retarded arguments. J. Differential Equations. 45 (1982), 75-84.
[5] G. Ladas, I. P. Stavroulakis, Oscillations caused by several retarded and advanced arguments. J. Differential Equations. 44 (1982), 134-152.
[6] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments. Monographs and Textbooks in Pure and Applied Mathematics 110, Mercel Dekker, Inc., New York, 1987.
[7] Ö. Öcalan, N. Kılıç and U. M. Özkan, Oscillatory behaviour of nonlinear advanced differential equations with a nonmonotone argument. Acta Mathematica Universitatis Comenianae. 88 (2019), no. 2, 239-246.

Factorization of a statistical matrix

GONCA KIZILASLAN

Kirikkale University, Kirikkale, Turkey

email: goncakizilaslan@gmail.com
We define a square matrix with entries including q-integers and the powers of the indeterminates x and y. We see that the well known Helmert matrix can be obtained for some values of q, x and y. We are interested in the $L U$ factorization of defined matrix since $L U$ decomposition of a matrix gives much information about its structural properties. We also examine some properties of these matrices corresponding to some special values of q, x and y.

MSC 2010: 15A23, 05A30, 65F35

Keywords: Factorization of matrices, q-calculus, matrix norms

Roth's theorem on arithmetic progressions

MUSTAFA KUTAY KUTLU ${ }^{1}$, ENGİN MERMUT ${ }^{2}$
1,2 Dokuz Eylül University, İzmir, Turkey

emails: ${ }^{1}$ mustafakutay.kutlu@ogr.deu.edu.tr; ${ }^{2}$ engin.mermut@deu.edu.tr
An arithmetic progression of length k ($\mathrm{k}-\mathrm{AP}$) is a sequence of k -numbers such that each difference between two consecutive terms is the same constant. Finding long arithmetic progressions in certain subsets of integers is at the center of mathematics in the last century. In this talk, we will first give a quick survey of remarkable results on this topic. In particular, we will focus on Roth's theorem on arithmetic progressions. Finally, we will also talk about recent significant results.

MSC 2010: 11B25, 11B75, 11L03
Keywords: Arithmetic progression, Roth's theorem, upper density

References

[1] E. Szemerédi, On sets of integers containing no elements in arithmetic progression. Acta Arithmetica 27 (1975), 199-245.
[2] K. Roth, On certain sets of integers. J. London Math Soc. 28 (1953), 104-109.
[3] V. der Waerden, Beweis Archief voor Wiskunde. Nieuw Arch. Wiskd. 15 (1947), 212-216.

A note on nilpotent units in commutative group rings of direct product groups

ÖMER KÜSMÜŞ

Van Yüzüncü Yıl University, Van, Turkey
email: omerkusmus@yyu.edu.tr

Let $V(R G)$ display the normalized unit group of group ring $R G$ of a group G over a ring R. G-nilpotent units in a commutative group ring has been defined in [3]. In this talk, some necessary and sufficient conditions for a normalized unit group in a commutative group ring of a direct product group $G \times H$ to consist only of $G \times H$-nilpotent units have been explained and especially some results which are related to groups $G \times C_{3}$ and $G \times C_{4}$ have been introduced where C_{3} and C_{4} are cyclic groups of orders 3 and 4 respectively. In this context, we can say that the study extends the results in [3]. At the end, some open problems which are inspired by nilpotent units are served as future works.

MSC 2010: 16S34, 16U60, 20K10, 20K20, 20K21
Keywords: Nilpotent, unit, group ring, direct product group

References

[1] N. Bourbaki, Commutative Algebra. Elements of Mathematics (Berlin), Springer, 625, 1989.
[2] P. Danchev, Trivial units in abelian group algebras. Extr. Math. 24 (2009), 47-53.
[3] P. Danchev, G-nilpotent units in Abelian group rings. Comment. Math. Univ. Carolin. 53 (2012), no. 2, 179-187.
[4] N. Gorentas, A note on simple trinomial units in $U_{1}\left(\mathbb{Z} C_{p}\right)$. Turkish J. Math. 44 (2020), no. 5, 1783-1791.
[5] G. Karpilovsky, On units in commutative group rings. Arch. Math. (Basel) 38 (1982), 420-422.
[6] Ö. Küsmüs, Nilpotent, idempotent and units in group rings. (PhD), Yuzuncu Yal University, Institute of Natural and Applied Science Van, Turkey, 2019.
[7] Ö. Küsmüs, On idempotent units in commutative group rings. Sakarya University Journal of Science 24 (2020), no. 4, 782-790.
[8] W. May, Group algebras over finitely generated rings. J. Algebra 39 (1976), 483-511.
[9] C. P. Milies, S. K. Sehgal, An introduction to group rings. Kluwer, North-Holland, Amsterdam, 2002.

On the numerical solution of the fractional integro-differential equation using shifted Chebyshev polynomials of the third kind

ZINEB LAOUAR ${ }^{1}$, NOURIA ARAR ${ }^{2}$, AMEL HIOUAL ${ }^{3}$
${ }^{1}$ Abdelhafid Boussouf University Center of Mila, Algeria
${ }^{2}$ Frères Mentouri Constantine University, Algeria
${ }^{3}$ University of Larbi Ben M’hidi, Oum El Bouaghi, Algeria.

emails: ${ }^{1}$ z.laouar@centre-univ-mila.dz; ${ }^{2}$ arar.nouria@umc.edu.dz; ${ }^{3}$ amel.hioual@univ-oeb.dz
The presented work aims to provide a new numerical approach for linear fractional integrodifferential equations based on collocation method. A Gauss collocation method is developed with the use of shifted Chebyshev polynomials of the third kind to approximate the solution. The fractional derivative is described in the Caputo sense. Convergence and error analysis are discussed. Some examples are presented to confirm the theorical results and prove the efficiency and reliability of the numerical approach.

MSC 2010: 34A08, 26A33, 33C47
Keywords: Fractional integro-differential equation, shifted Chebyshev polynomials of the third kind, spectral collocation method, Caputo fractional derivative

References

[1] R. Amin, K. Shah, M. Asif, I. Khan and F. Ullah, An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. Journal of Computational and Applied Mathematics 381 (2021), 113028.
[2] A. A. El-Sayed and P. Agarwal, Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. Mathematical Methods in the Applied Sciences 42 (2019), no. 11, 3978-3991.
[3] D. Funaro, Polynomial approximation of differential equations. Springer-Verlag, Berlin, Heidelberg, 1992.
[4] A. M. S. Mahdy, E. M. H. Mohamed and G. M. A. Marai, Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomials of the third kind method. Theoretical Mathematics and Applications 6 (2016), no. 4, 87-101.
[5] D. S. Mohammed, Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Mathematical problems in engineering 2014 (2014).

On semicommutative rings in term of nilpotent elements

MURAT LUZUM ${ }^{1}$, İSMAİL HAKKI DENIZLER ${ }^{2}$
1,2 Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ mluzum@yyu.edu.tr; ${ }^{2}$ ihdenizler@gmail.com

Semicommutative rings are a generalization of reduced rings, and thus, nilpotent elements play an important role in these rings. There are many examples of rings with nilpotent elements which are semicommutative ring. We introduce the notion of nilpotent-semicommutative rings which is a generalization of semicommutative rings. A ring R said to be a nilpotent-semicommutative ring if $\forall a, b \in R, a b=0$ implies $a N(R) b=0$. where $N(R)$ stands for the set of nilpotents of R. A lot of properties of nilpotent-semicommutative rings are introduced and many known results on semicommutative rings are extended.

MSC 2010: 16S36, 16N40, 13F20
Keywords: nilpotent semicommutative ring, semicommutative ring, reduced ring

References

[1] T. Y. Lam, A First Course in Noncommutative Rings, 2nd Edition. Springer- Verlag, New York, 2001.
[2] Y. Qu, J. Wei, Some notes on nil-semicommutative rings. Turk. J. Math. 38 (2014), 212-224.
[3] W. Chen, On Nil-semicommutative Rings. Thai J. Math. 9 (2011), 39-47.

Boundedness of sum of generalized weighted composition operators between weighted spaces of analytic functions

JASBIR SINGH MANHAS
Sultan Qaboos University, Muscat, Sultanate of Oman
email: manhas@squ.edu.om

Let $\mathcal{H}(\mathbb{D})$ be the space of analytic functions on the unit disc \mathbb{D} and let $\mathcal{S}(\mathbb{D})$ denotes the set of analytic self maps of \mathbb{D}. Let $\Psi=\left(\psi_{j}\right)_{j=0}^{k}$ be such that $\psi_{j} \in \mathcal{H}(\mathbb{D})$ and $\varphi \in \mathcal{S}(\mathbb{D})$. We characterize the boundedness and completely continuous of the sum of generalized weighted composition operators

$$
T_{\Psi, \varphi}^{k} f=\sum_{j=0}^{k} \psi_{j} \cdot f^{(j)} \circ \varphi=\sum_{j=0}^{k} \mathfrak{D}_{\psi_{j}, \varphi}^{j} f, \quad f \in \mathcal{H}(\mathbb{D}),
$$

between weighted Banach spaces of analytic functions $H_{v}^{\infty}\left(H_{v}^{0}\right)$ and $H_{w}^{\infty}\left(H_{w}^{0}\right)$ which unifies the study of products of composition operators, multiplication operators and differentiation operators. As applications, we obtain the boundedness of the generalized weighted composition operators $\mathcal{D}_{\psi, \varphi}^{n}$: $\mathcal{B}_{v}\left(\mathcal{B}_{v}^{0}\right) \rightarrow \mathcal{B}_{w}\left(\mathcal{B}_{w}^{0}\right), \mathcal{B}_{v}\left(\mathcal{B}_{v}^{0}\right) \rightarrow H_{w}^{\infty}\left(H_{w}^{0}\right)$ and $H_{v}^{\infty}\left(H_{v}^{0}\right) \rightarrow \mathcal{B}_{w}\left(\mathcal{B}_{w}^{0}\right)$, where $\mathcal{B}_{v}\left(\mathcal{B}_{v}^{0}\right)$ and $\mathcal{B}_{w}\left(\mathcal{B}_{w}^{0}\right)$ are weighted Bloch-type (little Bloch-type) spaces. Also, new characterizations of the boundedness of the operators $T_{\Psi, \varphi}^{k}$ and $\mathcal{D}_{\psi, \varphi}^{n}$ are given. Examples of bounded and unbounded operators $T_{\Psi, \varphi}^{k}$ and $\mathcal{D}_{\psi, \varphi}^{n}$ are given to explain the role of inducing functions ψ_{j}, φ and the weights v, w of the underlying weighted spaces.

MSC 2010: 47B33, 47B38, 46E15
Keywords: Composition operators, multiplication operators, generalized weighted composition operators, weighted Banach spaces, weighted Bloch-type spaces, bounded operators

Acknowledgement: The author is supported by SQU Grant No.IG/SCI/MATH/20/08.

On the behavior of solutions of Riemann-Liouville fractional nonlinear equation with multiple variable delays

KASIM MANSIZ ${ }^{1}$, CEMİL TUNÇ ${ }^{2}$
1,2 Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ kasimmansiz@hotmail.com, ${ }^{2}$ cemtunc@yahoo.com

This paper deals with a nonlinear system of fractional order differential equations with RiemannLiouville fractional derivative. We prove a new result on the asymptotic stability of zero solution of the considered system. The main result of this paper includes sufficient conditions. The method of the proof is based on the definition of a new Lyapunov-Krasovskiil functional. A comparison between our result and the related results in the literature shows that the result of this paper have a general form and extends some former ones. We also present a new example to provide the satisfaction of the conditions of the main result.

Subject Classification: 26A33, 34K20, 34K37, 45J05, 45M10
Keywords: Lyapunov-Krasovskiĭ functional, Riemann-Liouville derivative, nonlinear fractional differential equation, multiple delays, asymptotic stability

References

[1] S. Liu, X. Wu, X. F. Zhou and W. Jiang, Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dynamics 86 (2016), 65-71.
[2] I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999.
[3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations. Elsevier, New York, 2006.
[4] M. Gözen and C. Tunç, A new result on exponential stability of a linear differential system of first order with variable delays. Nonlinear Stud. 27 (2020), no. 1, 275-284.
[5] C. Tunç, An application of Lyapunov functions to properties of solutions of a perturbed fractional differential system. Int. J. Math. Comput. Sci. 17 (2022), no. 2, 537-550.
[6] O. Tunç, On the behaviors of solutions of systems of non-linear differential equations with multiple constant delays. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 115 (2021), no. 4, Paper No. 164, 22 pp.

A superconvergent collocation method for two-dimensional Hammerstein integral equations

SANDA MICULA
Babeş-Bolyai University, Cluj-Napoca, Romania
email: smicula@math.ubbcluj.ro

We investigate a collocation method for the approximate solution of Hammerstein integral equations in two dimensions. As in [2], collocation is applied to a reformulation of the equation in a new unknown, thus reducing the computational cost and simplifying the implementation. We start with a special type of piecewise linear interpolation over triangles for a reformulation of the equation. This leads to a numerical integration scheme that can then be extended to any bounded domain in \mathbb{R}^{2}, which is used in collocation. We analyze and prove the convergence of the method and give error estimates. As the quadrature formula has a higher degree of precision than expected with linear interpolation, the resulting collocation method is superconvergent, meaning that at the collocation nodes it converges faster than over the entire domain, thus requiring fewer iterations for a desired accuracy. We show the applicability of the proposed scheme on several numerical examples and discuss future research ideas in this area.

MSC 2010: 45B05, 65R20, 65D07, 41A15, 47G10
Keywords: Hammerstein integral equations, spline collocation, interpolation, superconvergence

References

[1] K. E. Atkinson, The numerical solution of integral equations of the second kind. Cambridge Univ. Press, Cambridge, 1997.
[2] S. Kumar, I. H. Sloan, A new collocation-type method for Hammerstein integral equations. Math. of Comp. 48 (1987), 585-593; doi: 10.1090/S0025-5718-1987-0878692-4.
[3] G. Mastroianni, G. V. Milovanović and D. Occorsio, Nyström method for Fredholm integral equations of the second kind in two variables on a triangle. Appl. Math. Comp. 219 (2013), no. 14, 7653-7662; doi:10.1016/j.amc.2013.01.054.
[4] S. Micula, A spline collocation method for Fredholm-Hammerstein integral equations of the second kind in two variables. Appl. Math. Comp. 265 (2015), 352-357; doi: 10.1016/j.amc.2015.05.017.
[5] P. K. Sahu, A. K. Ranjan and S. Saha Ray, B-spline Wavelet Method for Solving FredholmHammerstein Integral Equation Arising from Chemical Reactor Theory. Nonlin. Eng. 7 (2018), no. 3, 163-169; doi: 10.1515/nleng-2017-0116
[6] A. M. Wazwaz, Linear and Nonlinear Integral Equations, Methods and Applications. Higher Education Press, Beijing, Springer Verlag, New York, 2011.

Approximate solution of the transmission problem via transform method

OKTAY SH. MUKHTAROV ${ }^{1,2}$, MERVE YUCEL ${ }^{3}$, KADRIYE AYDEMIR ${ }^{4}$
${ }^{1}$ Gaziosmanpaşa University, 60250, Tokat, Turkey
${ }^{2}$ Azerbaijan National Academy of Sciences, Baku, Azerbaijan
${ }^{3}$ Hitit University, Çorum, Turkey
${ }^{4}$ Amasya University, Amasya, Turkey

emails: ${ }^{1}$ omukhtarov@yahoo.com; ${ }^{3}$ merve.yucel@outlook.com.tr ${ }^{4}$ kadriyeaydemr@gmail.com
There are various approximation methods for solving a system of differential equations, e.g., Adomian decomposition method (ADM), Galerkin method, homotopy perturbation method (HPM), variational iteration method (VIM), and the differential transform method (DTM). The DTM is one of the numerical methods which enables to find an approximate solution in case of linear and nonlinear systems of differential equations. The concept of the differential transform method was first proposed by Zhou [1], who solved linear and nonlinear initial value problems in electric circuit analysis.

In this study, we shall adapt the Differential transform method (DTM) to new type boundary value problem consisting of the equation

$$
y^{\prime \prime}(x)-4 x y^{\prime}(x)+\left(4 x^{2}-2\right) y(x)=0, \quad x \in[0,1) \cup(1,2]
$$

subject to the boundary conditions given by

$$
y(0)=2, \quad y(2)=8 e^{4}
$$

and additional transmission conditions at the point of interaction $x=1$, given by

$$
y(1+0)=2 y(1-0), \quad y^{\prime}(1+0)=3 y^{\prime}(1-0)
$$

MSC 2010: 34B05, 65D20
Keywords: Boundary value problems, differential transform method, singular point, transmission conditions

References

[1] J. K. Zhou, Differential transformation and its application for electrical circuits. Huarjung University Press, Wuhan, China, 1986 (in Chinese).
[2] Z. Odibat, S. Momani and V. S. Ertürk, Generalized differential transform method: application to differential equations of fractional order. Applied Mathematics and Computation 197 (2008), no. 2, 467-477.
[3] O. Sh. Mukhtarov and M. Yucel, A Study of the Eigenfunctions of the Singular Sturm Liouville Problem Using the Analytical Method and the Decomposition Technique. Mathematics 8 (2020), no. 3, 415.

Hopf bifurcations in a model of epidemic awareness

ALİ MUSALİ ${ }^{1}$, ÇAĞRI SAĞLAM ${ }^{2}$, MUSTAFA KEREM YÜKSEL ${ }^{3}$
1,2 Bilkent University, Ankara, Turkey
${ }^{3}$ Atılım University, Ankara, Turkey
emails: ${ }^{1}$ ali.musali@ug.bilkent.edu.tr; ${ }^{2}$ csaglam@bilkent.edu.tr; ${ }^{3}$ kerem.yuksel@atilim.edu.tr; mkeremyuksel@gmail.com

This study analyzes a SIR based behavioral epidemics model with implicit classes of risky and safe acting susceptibles who update their behaviour according to the prevalence of the disease with a delay. We show that limit cycles via Hopf and Hopf-Hopf bifurcations may emerge due to the coupled delayed feedback effect between behavioral change and epidemic prevalence. We also numerically characterized how the Hopf boundary evolves with respect to the incidence rate of the risky susceptibles, responsiveness of the susceptibles to the observed prevalence of the disease, and the delay term.

MSC 2010: 37G15, 34K18, 34K60
Keywords: SIR model, coupled behavioral-epidemic dynamics, Hopf bifurcation

References

[1] K. L. Cooke, and P. van den Driessche, On Zeroes of Some Transcendental Equations. Funkcialaj Ekvacioj 29 (1986), 77-90.
[2] P. Manfredi, and A. D'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. New York, NY: Springer New York, 2013; doi:10.1007/978-1-4614-5474-8.
[3] J. Mena-Lorca, and H. Hethcote, Dynamic models of infectious diseases as regulators of population sizes. Journal of Mathematical Biology 30 (1992), no. 7, 693-716; doi:10.1007/BF00173264.

Injective modules are ss-lifting in R-mod

BURCU NIŞANCI TÜRKMEN ${ }^{1}$, YILMAZ MEHMET DEMİRCİ ${ }^{2}$
${ }^{1}$ Amasya University, Amasya, Turkey
${ }^{2}$ Abdullah Gül University, Kayseri, Turkey
emails: ${ }^{1}$ burcu.turkmen@amasya.edu; ${ }^{2}$ yilmaz.demirci@agu.edu
In this study, we define ss-Harada modules for classifying in rings R for which every injective R-module is ss-lifting. Interaction between ss-Harada modules and ss-lifting modules resolved in the category R-mod. Thus we have classified ss-lifting modules with the help of injective modules. Firstly we give some properties of ss-Harada modules and rings. Then we characterize ss-Harada modules.

MSC 2010: 16D10, 16D40, 16D60
Keywords: Injective module, lifting module, Harada module, ss-lifting module, ss-Harada module

References

[1] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Basel. Boston, Berlin. Birkhauser Verlag, 2006.
[2] F. Eryılmaz, SS-lifting modules and rings. Miskolc Mathematical Notes 22 (2021), no. 2, 655-662.
[3] M. Jayaraman, N. Vanaja, Harada modules. Communications in Algebra 28 (2000), no. 8, 37033726.
[4] E. Kaynar, H. Çalışıcı, E. Türkmen, SS-supplemented modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), no. 1, 473-485.
[5] D. W. Sharpe, P. Vamos, Injective Modules. Cambridge Tracts in Mathematics, Series Number 61, Cambridge University Press, 2008.

A new result on the asymptotic stability of a stochastic delay differential equation of the second order

ZOZAN OKTAN ${ }^{1}$, CEMİL TUNÇ ${ }^{2}$
1,2 Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ zozanoktan34@gmail.com, ${ }^{2}$ cemtunc@yahoo.com

This article considers a non-linear stochastic differential equation of second order with multiple constant delays. A new result on the asymptotic stability of the zero solution of that equation is obtained. The new asymptotic stability result is proved by using an appropriate Lyapunov-Krasovskii functional. As a numerical application, an example is constructed to verify the assumptions of the stability result. The given result extends and improves some former results in the literature.

Subject Classification: 34K20, 34K50, 60 H 35
Keywords: Stochastic differential equation, second order, stability, Ito formula, Lyapunov-Krasovskii functional

References

[1] A.M.A Abou-El-Ela, A. R. Sadek, A. M. Mahmoud, et al., Asymptotic stability of solutions for a certain non-autonomous second-order stochastic delay differential equation. Turkish Journal of Mathematics 41 (2017), no. 3, 576-584.
[2] C. Tunç, O. Tunç, On the asymptotic stability of solutions of stochastic differential delay equations of second order. Journal of Taibah University for Science 13 (2019), no. 1, 875-882.
[3] X. Mao, Stochastic Differential Equations and Applications. Woodhead Publishing, UK, 2011.

Topological group-groupoids

ABDULLAH FATİH ÖZCAN ${ }^{1}$, İLHAN İÇEN ${ }^{2}$
1,2 İnönü University, Malatya, Turkey
emails: ${ }^{1}$ abdullah.ozcan@inonu.edu.tr; ${ }^{2}$ ilhan.icen@inonu.edu.tr

The groupoid was offered by Brandt[1]. The structure of topological groupoid was given by Ehresmann [2]. The groupoid action is very important appliance in algebraic topology which is offered by Ehresmann. Another algebraic notion is a covering which is given by Brown [3]. The topological group-groupoids (G-groupoid) was first offered by A.F.Ozcan [4]. The definition of coverings of topological G-groupoid and actions of topological G-groupoid were also given by A.F.Ozcan [5]. In this paper, we will create a category $\operatorname{TGGpdCov}(G)$ of coverings of topological G-groupoid and a category $\operatorname{TGGpdOp}(G)$ of actions of topological G-groupoid. And then we will prove that this categories are equivalent.

MSC 2010: 22A22, 14H30, 57M60
Keywords: Groupoids, coverings of groupoid, actions of groupoid

References

[1] H. Brandt, Uber ein verallgemeinerung des Gruppen begriffes. Math. Ann. 96 (1926), 360-366.
[2] C. Ehresmann, Categories topologiques et categories differentiables. Colloque de Geometrie Differentielle Globale, Cenrtre Belge de Recherches Mathematiques, Bruxelles, (1958), 137-150.
[3] R. Brown, Topology: A geometric account of general topology, homotopy types and the fundamental groupoid. Ellis Horwood, Chichester, 1988.
[4] I. Icen, A. F. Ozcan, Topological crossed modules and G groupoids. Algebras, Groups Geom. 18 (2001), 401-410.
[5] I. Icen, A. F. Ozcan, M. H. Gursoy, Topological Group-Groupoids and Their Coverings. Indian J. pure appl. Math. 36 (2005), no. 9, 493-502.

The minus partial order on endomorphism rings

TUFAN ÖZDİN

Erzincan Binali Yıldırım University, Erzincan, Turkey
email: tozdin@erzincan.edu.tr; tufan.ozdin@hotmail.com

Let M be right module and $S:=\operatorname{End}(M)$ be the ring of endomorphism of M. The minus partial order was first extensively studied [1] and [2]. The authors introduced in [3] the minus partial order on a ring. In this talk, we define the minus partial order of S and give some generalization of minus partial orders.

MSC 2010: 316D80; 16D40; 16W20
Keywords: Endomorphism ring, minus partial order operator, Rickart ring

References

[1] R. E. Hartwig, How to partially order regular elements. Math. Japonica 25 (1980), 1-13.
[2] S. K. Mitra, The minus partial order and shorted matrix. Linear Algebra Appl. 83 (1986), 1-27; doi:10.1016/0024-3795(86)90262-4.
[3] D. S. Djordjevic, D. S. Rakic and J. Marovt, Minus partial order in Rickart rings. Publ. Math. Debrecen 87 (2015), no. 3-4, 291-305; doi:10.5486/PMD.2015.7161.

Topological group and small loop transfer space

SEYED ZEYNAL PASHAEI ${ }^{1}$, NECAT GORENTAS ${ }^{2}$
${ }^{1}$ West Azerbaijan Province, Urmia, Iran
${ }^{2}$ Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ szpashaei1986@yahoo.com; ${ }^{2}$ ngortas@yahoo.com

In [1], Brodskiy et al. proved that if the operation of taking inverse in $\pi_{1}^{w h}\left(X, x_{0}\right)$ is continuous, then $\pi_{1}^{w h}\left(X, x_{0}\right)$ is a topological group. In [2], Pashaei et al. showed that if X is a small loop transfer space at x_{0}, then $\pi_{1}^{w h}\left(X, x_{0}\right)$ is a topological group. In this talk, we show that if X is a $\pi_{1}^{g c}\left(X, x_{0}\right)$-small loop transfer space at x_{0}, then $\pi_{1}^{w h}\left(X, x_{0}\right)$ is a topological group.

MSC 2010: 54H11, $57 \mathrm{M} 05,57 \mathrm{M} 07$
Keywords: Topological groups, fundamental group, Whisker topology

References

[1] N. Brodskiy, J. Dydak, B. Labuz, A. Mitra, Topological and uniform structures on universal covering spaces. arXiv: 1206.0071 .
[2] S. Z.Pashaei, B.Mashayekhy, H.Torabi, M.Abdullahi Rashid, On strong small loop transfer spaces relative to subgroups of fundamental groups. Topology and its Application 254 (2019), 117-131.

Existence and nonexistence for the higher-order logarithmic Klein-Gordon equation

ERHAN PİŞKİN ${ }^{1}$, RUKEN AKSOY ${ }^{2}$
1,2 Dicle University, Diyarbakır, Turkey
emails: ${ }^{1}$ episkin@dicle.edu.tr; ${ }^{2}$ ruken.5214@hotmail.com

In this presentation, we consider a Klein-Gordon equation with logarithmic nonlinearity. The Klein-Gordon equation is a kind of evolution equation. The evolution equations, namely partial differential equations with time t as one of the independent variables. Firstly, we established the global existence of solution by potential well method. In addition, we also obtain results of decay and nonexistence of solutions.
MSC 2010: 35A01, 35B44, 35G20
Keywords: Klein-Gordon, global existence, nonexistence

References

[1] M.M. Al-Gharabli, S.A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl. 454 (2017), 11141128.
[2] N. Irkıl, E. Piskin, Local existence for class of nonlinear higher-order wave equation with logarithmic source term. Asia Mathematika 5 (2021), no. 3, 89-100.
[3] Y. Ye, Global solution and blow up of logarithmic Klein-Gordon equation. Bull. Korean Math. Soc. 57 (2020), no. 2, 281-294

Existence and decay for the logarithmic Lame system

ERHAN PİŞKİ ${ }^{1}$, ERKAN SANCAR ${ }^{2}$
1,2 Dicle University, Diyarbakır, Turkey
emails: ${ }^{1}$ episkin@dicle.edu.tr; ${ }^{2}$ erkan-sancar@hotmail.com

In this presentation, we consider the logarithmic Lame system. The logarithmic Lame system is a kind of evolution equation. The evolution equations, namely partial differential equations with time t as one of the independent variables. Firstly, we established the existence of solution by semigroup method. In addition, we proved the decay of solutions.

MSC 2010: 35B40, 35L05, 35L70
Keywords: Decay, existence, Lame system

References

[1] M. Kafini, On the decay of a nonlinear wave equation with delay. Annali Dell'Universita'Di Ferrara, 67 (2021) 309-325.
[2] N. Taouaf, N. Amroun, A. Benaissa and A. Beniani, Well-posedness and asymptotic stability for the Lamé system with internal distributed delay. Mathematica Moravica, 22 (2018), no. 1, 31-41.

Multipliers of frames and woven frames in Hilbert spaces

ASGHAR RAHIMI ${ }^{1}$, BAYAZ DARABY ${ }^{2}$
${ }^{1,2}$ University of Maragheh, Maragheh, Iran
emails: ${ }^{1}$ rahimi@maragheh.ac.ir; ${ }^{2}$ bdaraby@maragheh.ac.ir

The concept of frames, as a generalization of the bases in Hilbert spaces, were first introduced by Duffin and Schaeffer [3] during their study of nonharmonic Fourier series in 1952. In 1985, as the wavelet erea began, Daubechies, Grossman and Meyer [2] observed that frames can be used to find series expansions $L^{2}(\mathbb{R})$ which are very similar to the expansions using orthonormal bases.

Now frame theory has been widely used in many fields such as filter bank theory, image processing, particularly in the more specialized context of wavelet frames and Gabor frames. Multipliers are operators which have important applications for signal processing and acoustics [5, 4]. Also woven and weaving Bessel sequences and frames is a very important and practical tools in the applications of frames [1]. In this study, we define the notion of multiplier for woven and weaving frames and we show that the properties of multiplier continuously depends on the chosen symbol sequence m and chosen two woven Bessel sequences. Further, we study the stability of woven frames under perturbation and its connection with multipliers.

MSC 2010: 42C15, 42C40, 47A05
Keywords: Frame, multiplier, woven frame, Bessel sequence

References

[1] T. Bemrose, P . G. Casazza, K. Grochenig, M. C. Lammers and R.G. Lynch, Weaving Frames. Oper. Matrices 10 (2016), no. 4, 1093-1116.
[2] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271-1283.
[3] R. J. Duffine and A. C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341-366.
[4] A. Rahimi, Multipliers of generalized frames in Hilbert spaces. Bull. Iran. Math. Soc. 37 (2011), no. 1, 63-80.
[5] A. Rahimi, P. Balazs, Multipliers for p-Bessel sequences in Banach spaces. Integer. Equ. Oper. Theory 68 (2010), no. 2, 193-205.

On controlled frame multipliers in Hilbert spaces

MEHDI RASHIDI-KOUCHI
Islamic Azad University, Ghaderabad, Iran
email: rashidimehdi20@gmail.com

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [2] in 1952 in order to investigate some deep problems in non-harmonic Fourier series. They were reintroduced in 1986 by Daubechies, Grossman, and Meyer and popularized from then on. The redundancy and flexibility offered by frames have provided a setting for their application in several areas of mathematics, physics and engineering. Owing to the increasing number of applications, considerable attention and effort have been paid towards development of frame theory in recent years. For basic results on frames, see [1].

A frame is a countable family of elements in a separable Hilbert space, which allows stable but not necessarily unique decomposition of arbitrary elements into expansion of the frame elements. Given a separable Hilbert space \mathcal{H} with inner product $\langle.,$.$\rangle , a sequence \Psi=\left\{\psi_{j}\right\}_{j \in J}$ is called a frame for \mathcal{H} if there exist constants $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{j \in J}\left|\left\langle f, \psi_{j}\right\rangle\right|^{2} \leq B\|f\|^{2}, \quad \text { for all } f \in \mathcal{H} \tag{1.1}
\end{equation*}
$$

If the upper bound holds in the above inequality, then $\left\{\psi_{j}\right\}_{j \in J}$ is said to be a Bessel sequence with Bessel constant B. A tight frame refers to the case when $A=B$, and a Parseval frame refers to the case when $A=B=1$.
Here, we study multipliers for controlled frames and investigate some of their properties. Furthermore, by using controlled dual frame, we show that the inverse of a multiplier operator is a multiplier operator too. For more details, see [3].

MSC 2010: 42C15, 42C40, 41A58
Keywords: Frame, controlled frame, multiplier

References

[1] O. Christensen, An Introduction to Frames and Riesz Bases. Birkhauser, Boston, 2016.
[2] R.J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341-366; doi:10.2307/1990760
[3] M. Rashidi-Kouchi, A. Rahimi and Firdous A. Shah, Duals and multipliers of controlled frames in Hilbert spaces. Int. J. Wavelets Multiresolut. Inf. Process. 16 (2018), no. 5, 1-13; doi:10.1142/S0219691318500571

Woven continuouse g-fusion frames in Hilbert spaces

MEHDI RASHIDI-KOUCHI ${ }^{1}$, MARYAM MOHAMMADREZAEE ${ }^{2}$, AKBAR NAZARI ${ }^{3}$
${ }^{1}$ Islamic Azad University, Ghaderabad, Iran
${ }^{2}$ Islamic Azad University, Kerman, Iran
${ }^{3}$ Shahid Bahonar University of Kerman, Kerman, Iran
emails: ${ }^{1}$ rashidimehdi20@gmail.com; ${ }^{2}$ dr.rezaee.bst@gmail.com; ${ }^{3}$ nazari@mail.uk.ac.ir

Frames for a Hilbert space were first introduced by Duffin and Schaeffer [2] in 1952. Daubechies, Grossmann and Meyer reintroduced frames, in 1986 and considered from then. Frame theory has applications in signal processing, image processing, data compression and sampling theory.
Some new types and generalizations of frame were introduced by researchers such as fusion frames, g-frames, woven frames, continuous frames
In other side, weaving frames were introduced by Bemrose et.al. [1] in 2016. Weaving frames are powerful tools for pre-processing signals and distributed data processing. Many researchers studied and generalized weaving frames. Some of these generalizations are weaving g-frames, weaving g-fusion frames [3].
In this paper, motivated and inspired by the above-mentioned works we introduce the concept of weaving continuous g-fusion frame. This frame includes weaving g-frames and weaving g-fusion frames. We extend some of the recent results of standard woven frames and woven fusion frames to woven continuous g-fusion frames.

MSC 2010: 42C15, 42C30, 42C40
Keywords: Frame, continuous g-fusion frame, weaving

References

[1] T. Bemrose, P.G. Casazza, K. Gröchenig, M.C. Lammers and R.G. Lynch, Weaving Frames. J. Oper. Matrices 10 (2016), 1093-1116; doi: 10.7153/oam-10-61
[2] R.J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341-366; doi:10.2307/1990760
[3] M. Mohammadrezaee, M. Rashidi-Kouchi, A. Nazari and A. Oloomi, Woven g-Fusion Frames in Hilbert Spaces. Sahand Commun. Math. Anal. 18 (2021), 133-151; doi: 10.22130/scma.2021.137940.870

Cubic b-spline collocation technique for time-dependent problems with small perturbation parameter

KELTHOUM LINA REDOUANE ${ }^{1}$, NOURIA ARAR ${ }^{2}$
${ }^{1,2}$ University Fréres Mentouri, Constantine, Algeria
emails: ${ }^{1}$ kelthoumlina.redouane@student.umc.edu.dz; ${ }^{2}$ arar.nouria@umc.edu.dz

In this talk, an efficient numerical method is successfully applied to treat a time-dependent singularly perturbed problem whose solution exhibits boundary layers. The key to the proposed method is splitting the solution into a smooth and a singular component, which is reconstructed using known additional information about the location of a layer. We obtain an approximate solution by using a Galerkin finite element with cubic b-spline functions as element shape and weight functions. The resulting system is fully discretized using the Crank Nicolson time discretization scheme. Test problems demonstrate the accuracy and efficacy of the presented method. The numerical results are found to be in good agreement with the exact solutions.

MSC 2010: 65L11, 65M60, 65D07
Keywords: Singularly perturbed problems, asymptotic expansion, regular component, singular component, Galerkin finite element method, cubic b-spline, Crank Nicolson scheme

Acknowledgement: K. L. Redouane and N. Arar acknowledge support from Directorate General for Scientific Research and Technological Development, Algeria.

References

[1] G. Beckett, J. A. Mackenzie, Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. App. Numer. Math. 35 (2000), no. 2, 87-109.
[2] M. Gheorghe, M. Sanda, Handbook Of Splines. Kluwer Academic Publisher, London, 1999.
[3] J. J .H. Miller, E. O’Riordan, G. I. Shishkin, L. P. Shishkina, Fitted Mesh Methods for Problems with Parabolic Boundary Layers. Math. Proc. R. Ir. Acad. 98A (1998), no. 2, 173-190.
[4] R. C. Mittal, Rajni Rohila, Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method. Chaos, Solitons $\mathcal{E}^{\mathcal{J}}$ Fractals 92 (2016), 9-19.
[5] P. M. Prenter, Splines and Variational Methods. John Wiley, New York, 1975.

A new method for variable order fractional Volterra-Fredholm integro-differential equations

MEHMET GIYAS SAKAR
Van Yüzüncü Yıl University, Van, Turkey
email: giyassakar@hotmail.com

In this article, a new method is developed for nonlinear variable order fractional Volterra-Fredholm integro-differential equations. The fractional derivatives are taken in the Caputo sense. This approach is based on reproducing kernel which is constructed by shifted Legendre polynomials. In order to shows the robustness of the proposed method, some examples are solved and numerical results are given in tabulated forms.

MSC 2010: 46E22, 47B32, 26A33
Keywords: Reproducing kernel method, Legendre polynomials, Caputo derivative, variable order, Volterra-Fredholm integro-differential equations

References

[1] J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation. Applied Mathematics Letters 76 (2018), 221-226.
[2] X. Li, H. Li, B. Wu, A new numerical method for variable order fractional functional differential equations. Applied Mathematics Letters 68 (2017), (2017).
[3] M. Gui, Y. Lin. Nonlinear Numercial Analysis in the Reproducing Kernel Space. Nova Science Publisher, New York, 2008.

New oscillation criteria for oddoorder neutral differential equations with distributed deviating arguments

MİNE SARIGÜL ${ }^{1}$, ERCAN TUNÇ²
1,2 Tokat Gaziosmanpaşa University, Tokat, Turkey
emails: ${ }^{1}$ midilmac@hotmail.com; ${ }^{2}$ ercantunc72@yahoo.com

New sufficient conditions for the oscillation of all solutions to a class of odd-order differential equations with unbounded neutral coefficients and distributed deviating arguments are established. The results are obtained by a Riccati type transformation as well as by an integral criterion. Examples illustrating the results are provided and some suggestions for further research are indicated.

MSC 2010: 34C10, 34K11, 34K40
Keywords: Oscillation, asymptotic behavior, odd-order, neutral differential equation

References

[1] S. R. Grace, J. R. Graef and E. Tunç, Oscillatory behaviour of third order nonlinear differential equations with a nonlinear nonpositive neutral term. J. Taibah Univ. Sci. 13 (2019), 704-710.
[2] J. Graef, S. Grace and E. Tunç, Oscillation criteria for even-order differential equations with unbounded neutral coefficients and distributed deviating arguments. Funct. Differ. Equ. 25 (2018), no. 3-4, 143-153.
[3] J. R. Graef, E. Tunç and S. R. Grace, Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation. Opuscula Math. 37 (2017), 839-852.
[4] E. Tunç, Oscillatory and asymptotic behavior of third-order neutral diferential equations with distributed deviating arguments. Electron. J. Differ. Equ. 2017 (2017), No. 16, 1-12.
[5] E. Tunç, S. Şahin, J. R. Graef and S. Pinelas, New oscillation criteria for third-order differential equations with bounded and unbounded neutral coefficients. Electron. J. Qual. Theory Differ. Equ. 2021 (2021), No. 46, 1-13.

Conjectures of Rossi and Sally on the monotonocity of the Hilbert functions

NIL ŞAHIN
Bilkent University, Ankara, Turkey
emails: nilsahin@bilkent.edu.tr
Characterizing numerical functions that might be Hilbert functions of one dimensional CohenMacaulay local rings is an important problem of commutative algebra. Sally's conjecture says that
"The Hilbert function of a one dimensional Cohen-Macaulay local ring with small enough embedding dimension is nondecreasing."
and Rossi's conjecture says that
"The Hilbert function of a one dimensional Gorenstein local ring is non-decreasing. "
In this talk, we will talk about the history and the recent results on these conjectures and the monotonocity of the Hilbert Functions.

MSC 2010: 13H10, 14H20, 13P10
Keywords: Pseudosymmetric semigroups, symmetric semigroups, Cohen-Macaulay local rings, Hilbert functions

Some Korovkin theorems for linear operators via power series method

NILAY ŞAHİN BAYRAM
Başkent University, Ankara, Turkey
email: nsbayram@baskent.edu.tr

The power series methods, include both Abel and Borel methods, are well known and more effective than ordinary convergence. These methods are considered in the Korovkin type approximation theory first time with the Abel summability method in [5] and in many papers the authors show how this concept can be applied to approximation theory [3, 4, 7]. Recently, by relaxing the positivity condition on linear operators, various approximation theorems have also been obtained. For instance, Duman and Anastassiou [1] relaxed the positivity condition of linear operators in the Korovkin-type approximation theory via the concept of statistical convergence that is another interesting convergence method $[2,6]$ and as it is well known that power series methods and statistical convergence are incompatible.
In the present work the main aim is to study some Korovkin-type approximation theorems for linear operators defined on derivatives of functions via power series methods. We give an example that our theorem makes more sense. It should also be noted that we study the rate of convergence. In the final section we summarize the results obtained in present paper.

MSC 2010: 40A35, 40C05, 40G10
Keywords: Korovkin type approximation theory, power series method, rate of convergence, linear operators

References

[1] O. Duman and Anastassiou, Towards Intelligent Modeling: Statistical Approximation Theory. Intelligent Systems Reference Library 14 (2016), 117-129.
[2] H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
[3] I. Özgüç, E. Tas, A Korovkin-type approximation theorem and power series method. Results Math. 69 (2016), 497-504.
[4] E. Tas, Ö. G. Atlhhan, Korovkin type approximation theorems via power series method. São Paulo J. Math. Sci. 13 (2019), 696-707.
[5] U. Stadtmüller and A. Tali, On certain families of generalized Nörlund methods and power series methods. J. Math. Anal. Appl. 238 (1999), 44-66.
[6] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73-74.
[7] M. Ünver, Abel transforms of positive linear operators. AIP Conf. Proc. 1558 (2013), no. 1, 1148-1151.

On ωe^{*}-continuous functions

PINAR ŞAŞMAZ ${ }^{1}$, MURAD ÖZKOÇ² ${ }^{2}$, SANTANU ACHARJEE ${ }^{3}$
1,2 Muğla Sıtkı Koçman University, Muğla, Turkey
${ }^{3}$ Gauhati University, Assam, India

emails: ${ }^{1}$ pinarsasmaz@posta.mu.edu.tr; ${ }^{2}$ murad.ozkoc@mu.edu.tr; ${ }^{3}$ sacharjee326@gmail.com
One of the most important notions of topology is undoubtedly the notion of open set. Many weak forms of the notion of the open set such as e^{*}-open sets [5], β-open sets [1], ω-open sets [4], $\omega \beta$-open sets [2] have been studied by several authors. Recently, many fundamental results related to the notions mentioned above have been obtained. In addition, the notion of continuity is one of the most important notions as well as the notion of open sets. Several weak and strong forms of the notion of continuity such as ω-continuity [6], e^{*}-continuity [5] and $\omega \beta$-continuity [5] have been studied by many mathematicians and they have been obtained many characterizations and fundamental properties. In this study, we introduce and investigate the notion of ωe^{*}-continuous function via ωe^{*}-open set [7]. We have obtained some characterizations and some fundamental properties of them. Also, the relationships between this notion and the other types of continuity in the literature are revealed. Furthermore, some fundamental results related to subspaces, restriction functions, product spaces, and graph functions have been obtained.

MSC 2010: 54C05, 54C08, 54C10
Keywords: ωe^{*}-open set, ωe^{*}-neighborhood, ωe^{*}-continuity

References

[1] M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings. Bull Fac Sci Assiut Univ A 12 (1983), no. 1, 77-90.
[2] H.H. Aljarrah, M.S.M. Noorani and T. Noiri, On $\omega \beta$-open sets. Submitted.
[3] H.H. Aljarrah, M.S.M. Noorani and T. Noiri, On $\omega \beta$-continuous functions. Eur. J. Pure Appl. Math. 5 (2012), 129-140.
[4] K.Y. Al-Zoubi and B. Al-Nashef, The topology of ω-open subsets. Al-Manarah Journal 9 (2003), 169-179.
[5] E. Ekici, On e^{*}-open sets and ($\left.D, S\right)^{*}$-sets. Math. Morav. 13 (2009), no. 1, 29-36.
[6] H. Hdeib, w-continuous functions. Dirasat Journal 16 (1989), no. 2, 136-153.
[7] M. Özkoç and P. Şaşmaz, On contra ωe^{*}-continuous functions. Poincare J. Anal. Appl. 8 (2021), no. 1(I), 51-65.

On the Hyers-Ulam stability of nonlinear Volterra integro-differential equation with the multiple constant delays

MERVE ŞENGÜN ${ }^{1}$, CEMİL TUNÇ ${ }^{2}$
1,2 Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ mervesengun07@gmail.com, ${ }^{2}$ cemtunc@yahoo.com

This paper deals with a nonlinear Volterra integro-differential equation with the multiple constant delays. We prove two theorems on the Hyers-Ulam and Hyers-Ulam-Rassias stabilities of the equation on a finite interval. The given theorems include sufficient conditions and the technique of the proofs is based on the fixed point method and Picard operator theory,and Pachpatte's inequality. Our results allow new contributions to the topic of Hyers-Ulam and Hyers-Ulam-Rassias. We give an example to provide and illustrate the application of our results.

MSC 2010: 34K05, 34K30, 47G20
Keywords: Hyers-Ulam stability, Hyers-Ulam-Rassias, delay Volterra integro-differential equation, fixed point, Picard operator

References

[1] S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients. J. Math. Anal. Appl. 320 (2006), no. 2, 549-561.
[2] Y. Li, Y. Shen, Hyers-Ulam stability of nonhomogeneous linear differential equations of second order. Int. J. Math. Math. Sci. 2009 (2009), Art. ID 576852, 7 pp.
[3] B. G. Pachpatte, Inequalities for differential and integral equations. Mathematics in Science and Engineering, 197. Academic Press, Inc., San Diego, CA, 1998. x+611 pp.
[4] C. Tunç, E. Biçer, Hyers-Ulam-Rassias stability for a first order functional differential equation. J. Math. Fundam. Sci. 47 (2015), no. 2, 143-153.
[5] C. Tunç, O. Tunç, New results on the qualitative analysis of integro-differential equations with constant time-delay. J. Nonlinear Convex Anal. 23 (2022), no. 3, 435-448.

A block conjugate gradient method for linear positive definite quaternion matrix equations

SİNEM ŞIMŞEK
Kırklareli University, Kırklareli, Turkey
email: sinem.simsek@klu.edu

A quaternion linear matrix equation can be transformed into a real linear matrix equation. During this transformation into the real setting, the dimension of the matrix equation increases by four times. Applications of Krylov subspace based approaches to these problems whose sizes are four times those of the original problems require more storage, but then we can benefit from fast and stable algorithms operating on real arithmetic. This study aims at the solution of a linear quaternion matrix equation with a Hermitian and positive definite coefficient matrix by employing the conjugate gradient method. We consider the setting when the quaternion Hermitian positive definite matrix at hand is very large so that direct methods such as those based on a Cholesky factorization are not applicable. First, we transform the quaternion linear matrix equation into a real matrix equation. Then a block conjugate gradient method is applied to the real matrix equation. The solution obtained after applying the conjugate gradient method is the real representation of the solution of the original quaternion problem. Thus, a conversion of this real solution to the quaternion setting is performed in the end.

MSC 2010: 65F10, 65F20, 15A24, 15A06, 15B33
Keywords: Krylov subspace, conjugate gradient, quaternion matrix equation, skew-field

On Maki's Λ-sets via strong β - I-open set

SERIFE TEKİN ${ }^{1}$, AYNUR KESKIN KAYMAKCI ${ }^{2}$
1,2 Selcuk University, Konya, Turkey
emails: ${ }^{1}$ serife.akkoyun42@gmail.com; ${ }^{2}$ akeskin@selcuk.edu.tr

In this presentation, we will define the notions of strong $\beta-I$-kernel of a set, $\Lambda_{s \beta I}$-sets, generalized $\Lambda_{s \beta I}$-sets, $\lambda_{s \beta I}$-closed sets by using the concepts of strong $\beta-I$-open sets in ideal topological spaces. It is well known that the notion of strong $\beta-I$-open sets is given by Hatir, Keskin and Noiri [10] and this notion is weaker than the notion of pre- I-open sets. Several characteristics will be studied. Also, two low separation axioms, namely strong $\beta-I-T_{1}$ spaces and strong $\beta-I-T_{2}$ spaces will be presented.

MSC 2010: 54A10, 54D10, 54A99
Keywords: Strong β-I-open sets, strong β-I-kernel, $\Lambda_{s \beta I}$-sets, generalized $\Lambda_{s \beta I}$-sets, $\lambda_{s \beta I}$-closed sets
Acknowledgement: This presentation is a part of the first author's BAP project (No:21201080).

References

[1] K. Kuratowski, Topology, Vol. I. Academic Press, New York, 1966.
[2] N. Levine, Generalized closed sets in topological spaces. Rend. Circ. Mat. Palermo 19 (1970), 89-96.
[3] H. Maki, Generalized Λ-sets and the Associated Closure Operator. The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, 1 Oct.1986.
[4] F. G. Arenas, J. Dontchev and M. Ganster, On λ-sets and dual of generalized continuity. Questions Answers Gen. Topology 15 (1997), no. 1, 3-13.
[5] M. Caldas, On some low seperation axioms via λ-open and λ-closure operator. Rendiconti del Circ. Mat. Di Palermo 54 (2005), 195-208.
[6] M. Caldas, E. Ekici and S. Jafari, On λ-closure Spaces. ProMathematica 20 (2006), no. 39-40, 119-133.
[7] T. Noiri and A. Keskin, Λ_{I}-sets and Some Weak Separation Axioms. Int. J. Math. Analysis 5 (2011), no. 11, 539-548.
[8] R. A. Hosny and A. M. Abd El-latif, On $\Lambda^{P}{ }_{I}$-sets in Ideal Topological Spaces. Math. Sci. Lett. 6 (2017), no. 1, 97-103.
[9] D. Jankovic and T. R. Hamlett, New topologies from old via ideals. Amer. Math. Monthly 97 (1990), 295-310.
[10] E. Hatir, A. Keskin and T. Noiri, On a New Decomposition of Continuity via Idealization. $J P$ Jour. Geometry and Topology 3 (2003), no. 1, 53-64.

Weighted composition operators on weighted spaces of holomorphic functions on Banach spaces

HAYRİ TOPAL
Van Yüzüncü Yıl University, Van, Turkey
email: hayritopal@yyu.edu.tr

The purpose of this presentation is to investigate qualitative properties of weighted composition operators between weighted spaces of holomorphic functions defined on the open unit ball of a Banach space. Necessary and sufficient conditions are given for weighted composition operators to be compact. We refer to [1], [2], [3], and [4] for more details about weighted composition operators.

MSC 2010: 47B38, 46G20

Keywords: Weights, weighted spaces, weighted composition operators

References

[1] A. Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions. J. London Math. Soc. 61 (2000), 872-884.
[2] D. García, M. Maestre and P. Sevilla-Peris, Composition operators between weighted spaces of holomorphic functions on Banach spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), 81-98.
[3] J. S. Manhas, Weighted composition operators and dynamical systems on weighted spaces of holomorphic functions on Banach spaces. Ann. Funct. Anal. 4 (2013), 58-71.
[4] M. D. Contreras and A. G. Hernández-Díaz, Weighted composition operators in weighted Banach spaces of analytic functions. J. Austral. Math. Soc. Ser. A 69 (2000), 41-60.

Benchmarking for nonsmooth convex optimization methods

ALİ HAKAN TOR

Abdullah Gül University, Kayseri, Turkey
email: hakantor@gmail.com.tr

The aim of this study is to provide a brief overview of nonsmooth convex optimization methods by discussing their implementation and comparing them using some numerical results. The test problems used in the numerical experience include small and large-scale nonsmooth convex and nonconvex optimization problems with special structures.
This study will be concluded by providing a brief discussion on future directions and applications of nonsmooth optimization.

MSC 2010: 65K05, 90C25, 90C06
Keywords: Nonsmooth optimization, convex optimization, comparison, large-scale problems

A note on qualitative behaviors of solutions of integro-differential equations

OSMAN TUNÇ
Van Yuzuncu Yil University, Van, Turkey
email: osmantunc89@gmail.com

In this paper, we study some properties of solutions to an integro-differential equation. A few new results have been given on the fundamental properties of solutions of the considered equation. The Lyapunov-Krasovkii functional approach is utilized to prove the main findings of this study. An example is provided to demonstrate how the results can be applied.

MSC 2010: 34D05, 34K20, 45J05
Keywords: Boundedness, stability, instability, integrability

References

[1] T. A. Burton, Volterra integral and differential equations. Mathematics in Science and Engineering, 202. Elsevier B. V., Amsterdam, 2005.
[2] J. J. Nieto, O. Tunç, An application of Lyapunov-Razumikhin method to behaviors of Volterra integrodifferential equations. RACSAM 115 (2021), no. 197.
[3] J. R. Graef, O. Tunç, Asymptotic behavior of solutions of Volterra integro-differential equations with and without retardation. J. Integral Equations Applications 33 (2021), no. 3, 289-300.
[4] M. Bohner, O. Tunç, Qualitative analysis of integro-differential equations with variable retardation. Discrete Continuous Dynamical Systems-B 27 (2022), no. 2, 639-657.

Enhanced new qualitative criteria to delay fractional integro-differential equations with Caputo derivative

CEMİL TUNÇ ${ }^{1}$, OSMAN TUNÇ ${ }^{2}$
1,2 Van Yuzuncu Yil University, Van, Turkey
emails: ${ }^{1}$ cemtunc@yahoo.com; ${ }^{2}$ osmantunc89@gmail.com

The aim of this article is to obtain some new and enhanced qualitative criteria to solutions of certain nonlinear delay fractional integro-differential equations with Caputo fractional derivative. The enhanced qualitative criteria are related to uniform stability, asymptotic stability, Mittag-Leffer stability and boundedness of solutions of the delay fractional integro- differential equations with Caputo derivative. The new results of this paper are proved by defining a suitable Lyapunov function and applying the Lyapunov-Razumikhin method. Here we improved some results that are available in the literature and obtain that results under less restrictive conditions. Two examples are also provided to illustrate the obtained results.

Subject Classification: 34K20, 34K50, 60H35
Keywords: Fractional order, delay, stability, Lyapunov-Krasovskii functional

References

[1] M. Bohner, O.Tunç, C. Tunç, Qualitative Analysis of Caputo Fractional Integro-Differential Equations with Constant Delays. Computational and Applied Mathematics 40 (2021), no. 214; doi:10.1007/s40314-021-01595-3.
[2] J. R. Graef, C. Tunç, H. Şevli, Razumikhin qualitative analyses of Volterra integro-fractional delay differential equation with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 103 (2021), 106037; doi:10.1016/j.cnsns.2021.106037.
[3] I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.
[4] O. Tunç, Ö. Atan, C. Tunç, J.-C. Yao, Qualitative Analyses of Integro-Fractional Differential Equations with Caputo Derivatives and Retardations via the Lyapunov-Razumikhin Method. Axioms 10 (2021), no. 2:58; doi:10.3390/axioms10020058.
[5] C. Tunç, An application of Lyapunov functions to properties of solutions of a Caputo perturbed fractional differential system. Int. J. Math. Comput. Sci. 17 (2022), no. 2, 537-550.
[6] B. S. Razumihin, The application of Lyapunov's method to problems in the stability of systems with delay. Avtomat. i Telemeh 21 740-748; translated as Automat. Remote Control 21 (1960), 515-520.

Wsa-coinjective modules

ERGÜL TÜRKMEN ${ }^{1}$, YILMAZ MEHMET DEMİRCİ ${ }^{2}$

${ }^{1}$ Amasya University, Amasya, Turkey
${ }^{2}$ Abdullah Gül University, Kayseri, Turkey
emails: ${ }^{1}$ ergul.turkmen@amasya.edu.tr; ${ }^{2}$ yilmazmdemirci@gmail.com
Throughout this talk, all rings considered are associative with an identity element and all modules at hand are right and unital.
It is shown that over an arbitrary ring the class of all short exact sequences $0 \longrightarrow M \xrightarrow{\psi} N \xrightarrow{\phi}$ $K \longrightarrow 0$ such that $\operatorname{Im}(\psi)$ is a wsa-supplement in N is a proper class. We study the objects of this class, which we call $\mathcal{W S S}$. We show that a module M is $\mathcal{W S S}$-coinjective if and only if it is a wsasupplement $E(M)$. We prove that over a right $C C$-ring a projective module P is $\mathcal{W S S}$-coinjective if and only if $P / \operatorname{wsa}(P)$ is injective. We also prove that a ring R is weakly semiartinian if and only if every right R-module is $\mathcal{W S S}$-coinjective. Finally, we show that over a crumbling-free ring $\mathcal{W S S}$-coprojective modules are only the projective modules.

MSC 2010:16D10, 18G25
Keywords: wsa-supplement submodule, weakly semiartinian module, wsa-coinjective module

References

[1] D. A. Buchsbaum, A note on homology in categories. Annals of Mathematics (1959), 66-74.
[2] Y. Durğun, Sa-supplement submodules. Bulletin of the Korean Mathematical Society 58 (2021), no. 1, 147-161.
[3] J. Clark, C. Lomp, N. Vanaja, N. and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory. Frontiers in Mathematics, Birkhauser Basel, 2006.
[4] N. V. Dung, D. Huynh, P. F. Smith and R. Wisbauer, Extending Modules. Pitman Research Notes in Mathematics Series Harlow: Longman, 1994.
[5] S. K. Jain, A. K. Srivastava, and A. A. Uganbaev, Cyclic Modules and The Structure of Rings. Oxford: Oxford Mathematical Monographs Oxford University Press, 2012.
[6] F. Kasch, Modules and Rings. London: Acedemic Press Inc., 1982.
[7] A.P. Misina and L.A. Skornjakov, Abelian Groups and Modules. American Mathematical Society, 1960.
[8] R. Wisbauer, Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia, 1991.

Some new sequence spaces derived by the composition of weighted mean and quadruple band matrix

CENNET TÜRKOĞLU ${ }^{1}$, ABDULCABBAR SÖNMEZ ${ }^{2}$
1,2 Erciyes University, Kayseri, Turkey
emails: ${ }^{1}$ ctrkgl123@gmail.com; ${ }^{2}$ sonmez@erciyes.edu.tr

In this study, some new sequence spaces, $c_{0}^{u, v}(\tilde{F}), c^{u, v}(\tilde{F}), l_{\infty}^{u, v}(\tilde{F})$ and $l_{p}^{u, v}(\tilde{F})(1 \leqslant p<\infty)$ derived by the composition of the generalized weighted mean matrix $F(u, v)$ and the quadruple band matrix $Q(r, s, t, z)$, are defined and it was shown that these spaces are linearly isomorphic to c_{0}, c, l_{∞} and $l_{p}(1 \leqslant p<\infty)$ spaces. Furthermore, we give the Schauder basis of the spaces $c_{0}^{u, v}(\tilde{F}), c^{u, v}(\tilde{F})$ and $l_{p}^{u, v}(\tilde{F})(1 \leqslant p<\infty)$. After then, we give some inclusion relations related to these spaces and determine $\alpha,-, \beta-$ and γ - duals. Finally, we characterize some matrix classes related to these spaces.

MSC 2010: 40C05, 40H05, 46B45
Keywords: Matrix domain, Schauder basis, $\alpha-, \beta$ - and γ - duals, matrix classes

Complex valued controlled fuzzy metric spaces and some common fixed point results

GOPAL YADAV ${ }^{1}$, RAJESH KUMAR SHARMA ${ }^{2}$, GENDLAL PRAJAPATI ${ }^{3}$
${ }^{1,3}$ Devi Ahilya University, Indore, Madhya Pradesh, India
${ }^{2}$ Vikram University, Sujalpur, Madhya Pradesh, India

emails: ${ }^{1}$ yadavgopal0902@gmail.com; ${ }^{2}$ raj_rma@yahoo.co.in; ${ }^{3}$ glprajapati@ietdavv.edu.in
In this paper, we introduce a new extension of fuzzy b-metric space, namely complex valued controlled fuzzy metric space. Our notion is the generalization of fuzzy b-metric space in terms of complex valued fuzzy metric space. We also prove Banach type contraction principle in this new version of complex valued fuzzy metric space. A fixed point theorem satisfying a new generalized ϕ-contraction condition is established. Furthermore, we furnish an example to validate our result.

MSC 2010: 47H10, 54H25, 37C25
Keywords: Complex fuzzy set, complex valued fuzzy metric space, controlled fuzzy metric space

On bicomplex numbers with coefficients from higher order Fibonacci numbers

TÜLAY YAĞMUR

Aksaray University, Aksaray, Turkey
email: tulayyagmur@aksaray.edu.tr

In this study, bicomplex higher order Fibonacci numbers that generalize the bicomplex Fibonacci numbers are studied. Several identities such as Binet's formula, recurrence relation, ordinary generating function, exponential generating function, Poisson generating function for bicomplex higher order Fibonacci numbers are given. Furthermore, Vajda's identity, Catalan's identity, Cassini's identity and d'Ocagne's identity involving these numbers are derived.

MSC 2010: 11B37, 11B39, 20G20, 11R52
Keywords: Fibonacci number, higher order Fibonacci number, bicomplex number

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications. John Wiley and Sons, New York, 2001.
[2] M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex Numbers and their Elementary Functions. CUBO A Mathematical Journal 14 (2012), no. 2, 61-80.
[3] S. K. Nurkan and I. A. Guven, A Note on Bicomplex Fibonacci and Lucas Numbers. International Journal of Pure and Applied Mathematics 120 (2018), no. 3, 365-377; doi:10.12732/ijpam.v120i3.7.
[4] M. Ozvatan, Generalized Golden-Fibonacci Calculus and Applications. Master of Science Thesis, Izmir Institute of Technology, 2018.
[5] C. Segre, Le rappresentazioni reali dell forme complesse e gli enti iperalgebrici. Math. Ann. 40 (1892), 413-467; doi:10.1007/BF01443559.

New continuity types via local closure function

FERİT YALAZ ${ }^{1}$, AYNUR KESKİN KAYMAKCI ${ }^{2}$
${ }^{1,2}$ Selcuk University, Konya, Turkey
emails: ${ }^{1}$ ferit.yalaz@selcuk.edu.tr; ${ }^{2}$ akeskin@selcuk.edu.tr

In this study, we introduce the concepts of Γ - \mathcal{I}-open set and pre- Γ - \mathcal{I}-open by using local function in ideal topological spaces. The relationship between these new types of subsets and some previously defined subset types is showed. Moreover, we define new continuity types with the help of classes of $\Gamma-\mathcal{I}$-open set and pre- Γ - \mathcal{I}-open. Thanks to these new types, we obtain the decomposition of continuity and Γ - \mathcal{I}-continuity.

MSC 2010: $54 \mathrm{~A} 05,54 \mathrm{~A} 10,54 \mathrm{C} 08,54 \mathrm{C} 10$
Keywords: Ideal topological spaces, local function, local closure function, continuity, decomposition of continuity

Acknowledgement: The first author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports during his doctorate studies.

References

[1] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open and I-continuous function. Kyungpook Math. J. 32 (1992), 21-30.
[2] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces. Novi Sad Journal of Mathematics 43 (2013), no. 2, 139-149.
[3] K.Kuratowski, Topology Volume I. Academic Press, New York-London, 1966.
[4] A. Keskin, Ş. Yüksel and T. Noiri, Decompositions of I-continuity and continuity. Commun. Fac. Sci. Univ. Ank. Series A1 53 (2004), no. 2, 67-75.
[5] A. Pavlovic, Local function versus local closure function in ideal topological spaces. Filomat 30 (2016), no. 14, 3725-3731.
[6] S. Suriyekala, R. Vembu, On separation axioms in ideal topological spaces. Malaya Journal of Matematik 4 (2016), no. 2, 318-324.
[7] R. Vaidyanathswamy, The localisation theory in set topology. Proceedings of the Indian Academy of Sciences 20 (1945), 51-61.
[8] N. V. Velicko, H-closed topological spaces. American Mathematical Society 78 (1968), no. 2, 103-118.
[9] F. Yalaz, A. K. Kaymakcı, New topologies from obtained operators via weak semi-local function and some comparisons. Filomat 35 (2021), no. 15, 5073-5081.
[10] F. Yalaz, A. K. Kaymakcı, Weak semi-local functions in ideal topological spaces. Turkish Journal of Mathematics and Computer Science 11 (2019), 137-140.

A new characterization of reflexive rings and their applications

RUHI YALÇIN ${ }^{1}$, HANDAN KÖSE ${ }^{2}$
1,2 Kirşehir Ahi Evran University, Kirşehir, Turkey
emails: ${ }^{1}$ yalcin.ruhi@ogr.ahievran.edu.tr; ${ }^{2}$ handan.kose@ahievran.edu.tr

Let R be a ring and $Z(R)$ the center of R. The ring R is called central right idempotent reflexive if $a R e=0$ implies $e R a \subseteq Z(R)$ for any $a \in R, e^{2}=e \in R$. We investigate properties of this class of rings. We obtain additionally that the semiprime rings, central semicommutative rings and central reversible rings are central right idempotent reflexive. It is shown that both the polynomial rings and the power series ring over a central right idempotent reflexive ring are central right idempotent reflexive.

MSC 2010: 16N40, 16S70, 16S80, 16U20
Keywords: Reflexive ring, central right idempotent reflexive, central left idempotent reflexive, central semicommutative ring, central reversible ring

References

[1] T. K. Kwak, Y. Lee, Reflexive property of rings. Comm. in Algebra 40 (2012), no. 4, 1576-1594.
[2] T. K. Kwak, Y. Lee, Reflexive property on idempotents. Bull. Korean Math. Soc. 50 (2013), no. 6, 1957-1972.
[3] T. Y. Lam, Exercises in modules and rings. Springer, 2007.

On statistical convergence for triple sequences on L - fuzzy normed space

REHA YAPALI ${ }^{1}$, ERDAL KORKMAZ ${ }^{2}$
1,2 Mus Alparslan University, Mus, Turkey
emails: ${ }^{1}$ reha.yapali@alparslan.edu.tr; ${ }^{2}$ e.korkmaz@alparslan.edu.tr

On L-fuzzy normed spaces, which is a generalization of normed spaces, statistical convergence, statistical Cauchy, statistical bounded concepts for both classic and double sequences have been defined recently and the relationships between these concepts have been examined. [9] In this study, the concepts of statistical convergence, statistical Cauchy and statistical boundedness on triple sequences will be given and the relationships between them will be examined with respect to L - fuzzy norm ρ.

MSC 2010: 03E72, 40A05, 40E05, 40G05
Keywords: Triple sequences, statistical convergence, statistical Cauchy, statistical boundedness, L - fuzzy normed space

References

[1] K. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1986), 87-96.
[2] S. Karakus, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces. Chaos, Solitons ξ^{3} Fractals 35 (2008), 763-769.
[3] S. A. Mohiuddine, Q. M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons \& Fractals 42 (2009), 1731-1737.
[4] M. Mursaleen, S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. Journal of Computational and Applied Mathematics 233 (2009), 142-149.
[5] J. H. Park, Intuitionistic fuzzy metric spaces. Chaos, Solitons \mathcal{F} Fractals 22 (2004), 1039-1046.
[6] D. Rath, Bc. Tripath, On statistically convergent and statistically Cauchy sequences. Indian Journal of Pure and Applied Mathematics 25 (1994), 381-386.
[7] S. Shakeri, R. Saadati, C. Park, Stability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces. International Journal of Nonlinear Analysis and Applications 1 (2010), no. 2, 72-83.
[8] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73-74.
[9] R. Yapalı and U. Gürdal, Pringsheim and statistical convergence for double sequences on L fuzzy normed space. AIMS Mathematics 6 (2021), no. 12, 13726-13733.
[10] L. A. Zadeh, Fuzzy sets. Information and Control 8 (1965), 338-353.

Quantum computer-resistant digital signature generation using complex numbers

CUMALİ YAŞAR ${ }^{1}$, AHMET BUĞRA YAŞAR
${ }^{1}$ Çanakkale Onsekiz Mart University, Çanakkale, Turkey
email: ${ }^{1}$ cyasar@comu.edu.tr

Using complex numbers in digital signature processes is a method with increased security that can be used both in quantum computers and classical computers [1]. The American National Security Agency Central Security Service [2] continues its studies on this subject in the form of competitions. Digital signature technologies concern all segments of society and have high economical added value. It is a technology that converts a numerical value you produce into money. It is used for secure data transmission, especially for communication between computers. Especially with the spread of quantum computers, it is seen with research that there will be a significant gap in cryptology $[3,4]$. The technique considered within the scope of this study is the realisation of Quantum Digital Signature Generation Using Complex Numbers.
Based on Complex Numbers Digital signature consists of a set of parameters used to define the signature and integrity of the message, as in the classical signature. A signer's private key V_{a}, such as Alice, is used to sign a message, and the corresponding public key is used for signature verification. A random number k is used to generate the signature for each message. $(k, n-1)=1$, and the greatest common divisor (GCD) of k must be chosen secretly by the signer. The required signature and signature lengths are $S=(r, s)$ and $|\operatorname{hash}(M)|+|q|[1]$, respectively.

MSC 2020: 68Q09, 68Q12, 81-04
Keywords: Complex number, quantum computing, digital signature, quantum digital signature

References

[1] M. A. Mughal, X. Luo, A. Ullah, S. Ullah, and Z. Mahmood, A Lightweight Digital Signature Based Security Scheme for Human-Centered Internet of Things. IEEE Access 6 (2018), 3163031643; doi: 10.1109/ACCESS.2018.2844406.
[2] National Security Agency, 2021. https://www.nsa.gov/ (Retrieved from Sep 18, 2021).
[3] A. Baumhof, Breaking RSA Encryption - an Update on the State-of-the-Art. QuintessenceLabs, Jun 13, 2019. https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art/ (Retrieved from Sep 18, 2021).
[4] T. Review, How Quantum Computer Could Break 2.048-Bit RSA Encryption in 8 Hours, 2021. https://cacm.acm.org/news/237303-how-quantum-computer-could-break-2048-bit-rsa-encryption-in-8-hours/fulltext (Retrieved from Sep 18, 2021).

Analysis of global exponential stability and pseudo almost periodic solution of a class of chaotic neural networks on time scales

RAMAZAN YAZGAN

Van Yuzuncu Yil University, Van, Turkey
email: ramazanyazgan@yyu.edu.tr

In this paper, by using the exponential dichotomy of linear dynamic equations on time scales, a fixed point theorem and the theory of calculus on time scales, we obtain sufficient conditions for the existence, uniqueness and global exponential stability of weighted pseudo-almost periodic solutions of a class of chaotic neural networks with mixed delays on time scales. A numerical example is also presented to illustrate the feasibility of our results.

MSC 2010: 34K14, 92B20, 93D20
Keywords: Weighted pseudo-almost periodic solutions, chaotic neural networks, time scales, mixed delays, existence and uniqueness, exponential stability

References

[1] F. Cherif. Pseudo almost periodic solutions of a class of chaotic neural network. Academy of Science, Engineering and Technology 73 (2011).
[2] T. Diagana, Pseudo almost periodic solutions to some diferential equations. Nonlinear Anal. $6 \mathbf{0}$ (2005), no. 7, 1277-1286.
[3] F. Cherif. Pseudo almost periodic solutions of a class of chaotic neural network. PhD thesis, University of Western Ontario, 1992.
[4] R. Yazgan, C. Tunç, On the almost periodic solutions of fuzzy cellular neural networks of high order with multiple time lags. Int. J. Math. Comput. Sci. 1 (2020), 183-198.
[5] R. Yazgan, C. Tunç, On the weighted pseudo almost periodic solutions of Nicholson's blowflies equation. Appl. and Appl. Math. 14 (2019), no. 2, 875-889
[6] R. Yazgan, An analysis for a special class of solution of a Duffing system with variable delays. AIMS Math. 6 (2021), no. 10, 11187-11199

An exact penalty function approach for inequality constrained optimization problems based on a new smoothing technique

NURULLAH YILMAZ ${ }^{1}$, HATICE OGUT ${ }^{2}$
1,2 Suleyman Demirel University, Isparta, Turkey
emails: ${ }^{1}$ nurullahyilmaz@sdu.edu.tr; ${ }^{2}$ haticeeogutt@gmail.com

Exact penalty methods are one of the effective tools to solve nonlinear programming problems with inequality constraints. In this study, a new family of smoothing technique to lower order exact penalty functions is introduced. Error estimations are presented among the original, non-smooth exact penalty and smoothed exact penalty problems. It is proved that an optimal solution of smoothed penalty problem is an optimal solution of original problem. A smoothing penalty algorithm based on the the new smoothing technique is proposed and the convergence of the algorithm is discussed. Finally, the efficiency of the algorithm on some numerical examples is illustrated.

MSC 2010: 90C30, 65K05, 65D15
Keywords: Constrained optimization, smoothing technique, exact penalty function

References

[1] A. Sahiner, G. Kapusuz, and N. Yilmaz A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numer. Algebra Control Optim. 6 (2016), no. 2, 161—173; doi:10.3934/naco. 2016006 .
[2] J. Lee, D. Skipper, Virtuous smoothing for global optimization. J. Glob. Optim. 69 (2017), 677699; doi:10.1007/s10898-017-0533-x.
[3] Z.Y. Wu, F. S. Bai, X.Q. Yang and L. S. Zhang, An exact lower order penalty function and its smoothing in nonlinear programming. Optimization 53 (2004), no. 1, 51-68; doi:10.1080/02331930410001662199.
[4] X. Xu, C. Dang, F. T. S. Chan and Y. Wang, On smoothing l_{1} exact penalty function for constrained optimization problems. Numer. Func. Anal. Optim. 40 (2019), no. 1, 1-18; doi: 10.1080/01630563.2018.1483948.

Roman type domination numbers of Fibonacci cubes

MELİS BERÇİN YILMAZ ${ }^{1}$, ZÜLFÜKAR SAYGI ${ }^{2}$
1,2 TOBB University of Economics and Technology, Ankara, Turkey
${ }^{1}$ Middle East Technical University, Ankara, Turkey
emails: ${ }^{1}$ mbercink@metu.edu.tr; ${ }^{2}$ zsaygi@etu.edu.tr

The Fibonacci cube of dimension n is the subgraph of n dimensional hypercube induced by the binary strings of length that contain no two consecutive ones [1]. These graphs are applicable as interconnection networks and in theoretical chemistry, and lead to the Fibonacci dimension of a graph [2]. The domination problem is a difficult problem to deal with in general. Let G be a graph and the D be a subset of the vertex set $V(G)$ of $G . D$ is a dominating set if every vertex from $V(G)$ either belongs to D or adjacent to some vertex from D. The domination number is the minimum cardinality of a dominating set of G. In this work we consider some special variants of domination problem called Roman type domination problem [3]. We remark that Roman domination problem is applicable both as a war defense strategy and can be applicable for a huge number of recourse-sharing problems. For instance, emergency vehicles are very expensive, and minimizing their numbers, while still being able to help injured people, will be of great use. We consider three Roman Domination type invariants called Roman domination number, double Roman domination number and weak Roman domination number and determine their exact values for Fibonacci cubes of dimension at most 10 by using their structure and Integer Linear Programming.

MSC 2010: 05C69, 68R10, 90C10
Keywords: Fibonacci cube, hypercube, Roman domination number
Acknowledgement: This work is supported by TÜBİTAK under Grant No. 120F125.

References

[1] W.-J. Hsu, Fibonacci cubes-a new interconnection technology. IEEE Trans. Parallel Distrib. 4 (1993), no. 1, 3-12.
[2] S. Klavžar, Structure of Fibonacci cubes: A survey. J. Comb. Optim. 25 (2013), 505-522.
[3] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs. Discrete Mathematics 278 (2004), 11-22.

Bezier curves belonging to some surfaces

CEYDA YILMAZ LUZUM ${ }^{1}$, ŞENAY BAYDAŞ ${ }^{2}$, BÜLENT KARAKAŞ3 ${ }^{3}$
${ }^{1,2,3}$ Yuzuncu Yil Univesity, Van, Turkey

emails: ${ }^{1}$ ceydayilmazz92@gmail.com; ${ }^{2}$ senay.baydas@gmail.com; ${ }^{3}$ bulentkarakas@gmail.com
Bernstein polynomials, which have important applications in many areas and more particularly commonly utilized in the scope of computer programming, are examined and some significant features of Bernstein polynomials are mentioned. Definition and characteristics of a Bezier curve in terms of Bernstein polynomials and De Casteljau algorithms that contributed to the development of Bezier curves and surface concepts are investigated, as well. A curve on surface, as well as multiple points on this curve, are taken in order to calculate the Bezier curve belonging to these points. The Bezier curves on the surface curves on are investigated and plotted with Matlab of which outputs are also included in the study.

MSC 2010: 65D17, 14H50, 51N05, 68U07
Keywords: Bernstein polynomials, Bezier curves, De Casteljau algorithms, Matlab

References

[1] G. Farin, Curves and Surfaces for CAGD a Practical Guide, Fifth edition. Academic Press, U.S.A., 2002.
[2] P. Bezier, Example of an existing system in the motor industry: the Unisurf system. Proc. R. Soc. Lond., Series A (1971), 207-218.
[3] P. De Casteljau, POLynomials, POLar forms, and interPOLation. In: Lyche, T., Schumaker, L.L. (Eds.). Math. Methods Comput. Aided Geom. Des.II, Academic Press, Boston (1991), 5768.
[4] D. Marsh, Applied Geometry for Computer Graphics and CAD. Springer-Verlag, London, 2005.

Improved new results on the asymptotic admissibility of nonlinear singular systems with multiple delays

ABDULLAH YİĞİT
Van Yüzüncü Yil University, Van, Turkey
email: a-yigit63@hotmail.com

In this paper, we study the asymptotic admissibility of a class of nonlinear singular systems of first order with two time-varying delays. We use the Lyapunov- Krasovskii functional method and some well-known inequalities to prove the results. Moreover, we give some examples with numerical simulations to show the correctness of the applied method by MATLAB-Simulink. By this work, we extend and improve some results available in the literature.

MSC 2010: 34A08, 34K20, 34K40
Keywords: Asymptotic admissibility, impulse-free, regular, singular system

References

[1] L. Dai, Singular control systems. Lecture Notes in Control and Information Sciences, 118. Springer-Verlag, Berlin, 1989.
[2] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems. Automatica 49 (2013), no. 9, pp. 2860-2866.
[3] C. Tunç, A. Yiğit, On the asymptotic stability of solutions of nonlinear delay differential equations. Journal of Mathematical Sciences 261 (2022), no. 2, 337-352.
[4] S. Xu, J. Lam, Robust control and filtering of singular systems. Lecture Notes in Control and Information Sciences, 332. Springer-Verlag, Berlin, 2006.
[5] A. Yiğit, C. Tunç, On qualitative behaviors of nonlinear singular systems with multiple constant delays. Journal of Mathematical Extension 16 (2022), no. 1, 1-31.

On the geometry of Ricci solitons

HALİ İBRAHIIM YOLDAS

Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
email: hibrahmyoldas@gmail.com

Einstein manifolds have an important place in manifold theory. As a generalization of Einstein manifolds, Ricci solitons have gained considerable importance and they have been studied widely by many mathematicans recently in literature. The purpose of this work is to study Ricci solitons, which are the special solutions of Ricci flows, on Riemannian manifolds. We obtain some significant results related to such solitons.

MSC 2010: 53B20, 53C44, 35Q51
Keywords: Ricci soliton, Riemannian manifold, affine vector field

References

[1] A. M. Blaga and C. Özgür, Almost η-Ricci and almost η-Yamabe solitons with torse-forming vector field. Quaes. Math. (2020), 1-21.
[2] B.-Y. Chen and S. Deshmukh, Ricci solitons and concurrent vector fields. Balkan J. Geom. Appl. 20 (2015), no.1, 14-25.
[3] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986). Contemp. Math. A.M.S. 71 (1988), 237-262.
[4] S. Pigola, M. Rigoli, M. Rimoldi and A. Setti, Ricci almost solitons. Ann. Sc. Norm. Pisa C1. Sci. 10 (2019), 757-799.

Index

Özdin, Tufan, 126
Özcan, Abdullah Fatih, 104, 125
Özkoç, Murad, 138
Öztürk, Havva Nur, 106
İbrahimoğlu, Betül Güdük, 94
Ilter, Serkan, 80
İçen, İlhan, 104, 125
İğret Araz, Seda, 105
İlter, Serkan, 106
Çınkır, Zübeyir, 70
Çekiç, Gökçen, 66
Çete, Ayfer, 67
Çetin, Pakize, 68
Çetin, Şahap, 69
Şaşmaz, Pınar, 138
Şahin Bayram, Nilay, 137
Şahin, Nil, 136
Şengül, Mustafa Taylan, 94
Şengün, Merve, 139
Şimşek, Sinem, 140
Acar, Hülya, 47
Acharjee, Santanu, 138
Agrawal, Garvita, 40
Ait-Amrane, Rosa, 41
Akkus, Ilker, 42, 43
Aksoy, Ruken, 128
Aktaş, Ömer, 107
Aldemir, Mehmet Serif, 44
Ali, Imran, 45
Alsoy-Akgün, Nagehan, 46
Amirali, Ilhame, 47
Arık, İrem, 49
Arab, Zineb, 48
Arar, Nouria, 116, 133
Arslan, Berna, 50
Arslan, Okan, 51
Artıran, Merve, 52
Ata, Enes, 53
Ateş, Muzaffer, 54, 55
Aydemir, Kadriye, 121
Ayid Ali, Rodi, 55
Başaran, Hamdullah, 99
Badawi, Ayman, 25
Bagirov, Adil, 27
Baydaş, Şenay, 157
Belbachir, Hacene, 41
Biçer, Harun, 56

Bilgin, Aygül, 80
Bodur, Murat, 57
Bohner, Martin, 28
Bouchal, Lydia, 58
Boutiche, Mohamed Amine, 101
Cakir, Musa, 93
Can, Zeynep, 59
Cancan, Murat, 44
Cansu, Sibel, 60
Chehrazi, Akram, 61
Ciftci, Idris, 62, 63
Coşkun, Mustafa, 64
Coskun, Nimet, 65
Dalmanoğlu, Özge, 71
Daraby, Bayaz, 130
Dede, Cahit, 72
Deliktas-Ozdemir, Ekin, 73
Demir, Nihal, 75
Demirci, Yılmaz Mehmet, 74, 123, 146
Demirel, Ceyda, 76
Denizler, İsmail Hakkı, 77
Denizler, İsmail Hakkı, 117
Dinç, Yavuz, 78
Dogru Akgöl, Sibel, 79
Duru, Hülya, 80, 106
Ediz, Suleyman, 44, 63
Ekmekçi, Ramazan, 81
El-Sayed, Ahmed Mohamed, 29
Erçelik, Elif, 82
Erdoğan, Betül, 42
Erdur, Sultan, 83
Ersu, Sare Buse, 84
Eryılmaz, Figen, 85
Eskisehirli, Beyaz Basak, 86
Evcin, Cansu, 87
Fındık, Şehmus, 89
Fellahi, Boutheina, 88
Gül, Kübra, 95
Güleryüz, Rabia, 96
Gümüş, Hafize, 97
Gümüs, Hafize, 75
Güneş Aktaş, Çisem, 98
Gürdal, Mehmet, 99
Gözen, Melek, 91
Genç, Ahmet, 51

Gorentas, Necat, 127
Guettai, Ghania, 92
Gunes, Baransel, 93
Hamidoğlu, Ali, 100
Hassi, Ilham, 101
Hedayatian, Karim, 102
Hioual, Amel, 103, 116
Iqbal, Javid, 45
Jung, Soon-Mo, 30
Köse, Handan, 151
Küsmüş, Ömer, 115
Kılıç, Nurten, 112
Kızılaslan, Gonca, 113
Kara, Merve, 107
Karakaş, Bülent, 157
Kartal, Neriman, 108
Kaya Gök, Gülistan, 109
Kayar, Zeynep, 110, 111
Kaymakçalan, Billur, 110, 111
Keskin Kaymakcı, Aynur, 141, 150
Khalili Golmankhaneh, Alireza, 31
Koca, Seyit, 106
Korkmaz, Erdal, 152
Kutlu, Mustafa Kutay, 114
Kuzu, Okan, 68
López-Alfonso, Salvador, 32
López-Pellicer, Manuel, 32
Laouar, Zineb, 103, 116
Luzum, Murat, 117
Manhas, Jasbir Singh, 118
Mansız, Kasım, 119
Mebarki, Karima, 58
Merikhi, Bachir, 88
Mermut, Engin, 114
Micula, Sanda, 120
Mohammadrezaee, Maryam, 132
Moll-López, Santiago, 32
Mukhtarov, Oktay Sh., 121
Musali, Ali, 122
Nadar, Mustafa, 82
Namegoshayfard, Mohammad, 102
Nazari, Akbar, 132
Nişancı Türkmen, Burcu, 123
Ogut, Hatice, 155
Oktan, Zozan, 124
Ouannas, Adel, 103

Oussaeif, Taki Eddine, 103
Paolucci, Alessandro, 33
Park, Choonkil, 34
Pashaei, Seyed Zeynal, 127
Patel, Prashantkumar, 57
Peker Dobie, Ayse, 73
Pişkin, Erhan, 78, 128, 129
Pignotti, Cristina, 33
Pinelas, Sandra, 35
Prajapati, Gendlal, 148
Rahimi, Asghar, 130
Rahmani, Mourad, 92
Rajeswari, K. N., 40
Rashidi-Kouchi, Mehdi, 131, 132
Redouane, Kelthoum Lina, 133
Sönmez, Abdulcabbar, 147
Sağlam, Çağrı, 122
Sakar, Mehmet Giyas, 134
Sancar, Erkan, 129
Sarıgül, Mine, 135
Saygı, Zülfükar, 52, 156
Schröcker, Hans-Peter, 36
Sharma, Rajesh Kumar, 148
Slynko, Vitalii, 37
Türkmen, Ergül, 146
Türkoğlu, Cennet, 147
Tan, Elif, 41
Teeth, Manjeet Singh, 40
Tekin, Şerife, 141
Topal, Hayri, 142
Tor, Ali Hakan, 143
Tunç, Cemil, 48, 49, 78, 83, 119, 124, 139, 145
Tunç, Ercan, 135
Tunç, Osman, 144, 145
Ustaoğlu, Uğur, 60
Uyar, Burak, 96
Yüksel, Kerem, 122
Yılmaz Luzum, Ceyda, 157
Yılmaz, Erol, 60
Yılmaz, Melis Berçin, 156
Yılmaz, Nurullah, 155
Yılmaz, Yalçın, 69
Yaşar, Ahmet Buğra, 153
Yaşar, Cumali, 153
Yağmur, Tülay, 149
Yadav, Gopal, 148
Yakar, Coşkun, 69

Yalçın, Ruhi, 151
Yalaz, Ferit, 150
Yapalı, Reha, 152
Yazgan, Ramazan, 154
Yazlık, Yasin, 67

Yeniaydın, Safak, 43
Yiğit, Abdullah, 158
Yoldaş, Halil İbrahim, 159
Yucel, Merve, 121

