On Nikodým, Grothendieck, Vitali-Hahn-Saks and Valdivia Measure Theorems

SALVADOR LPEZ-ALFONSO¹, <u>MANUEL LPEZ-PELLICER</u>², SANTIAGO MOLL-LPEZ³

^{1 2 3}Universitat Politcnica de Valncia, Valencia, Spain

emails: ¹salloal@upv.es; ²mlopezpe@mat.upv.es; ³sanmollp@mat.upv.es

Let \mathcal{A} be an algebra of subsets of a set Ω and let $ba(\mathcal{A})$ the Banach space of real or complex bounded finitely additive measures defined on \mathcal{A} endowed with the variation norm, which is equivalent to the supremum norm.

A subset \mathcal{B} of \mathcal{A} has property (N) if each \mathcal{B} -poinwise bounded sequence $(\mu_n, n \in \mathbb{N})$ of $ba(\mathcal{A})$ is norm bounded in $ba(\mathcal{A})$, i.e., the sequence $(\mu_n, n \in \mathbb{N})$ is uniformly bounded in \mathcal{A} . \mathcal{B} has property (G) [(VHS)] if for each bounded sequence [if for each sequence] $(\mu_n, n \in \mathbb{N})$ of $ba(\mathcal{A})$ the \mathcal{B} -poinwise convergence of $(\mu_n, n \in \mathbb{N})$ to $\mu \in ba(\mathcal{A})$ implies its weak convergence, i.e., $\lim_{n\to\infty} \varphi(\mu_n) = \varphi(\mu)$ for each linear continuous form φ defined in $ba(\mathcal{A})$.

 \mathcal{B} has property (sN) [(sG) or (sVHS)] if every increasing covering { $\mathcal{B}_n : n \in \mathbb{N}$ } of \mathcal{B} contains a set \mathcal{B}_p with property (N) [(G) or (VHS)], and \mathcal{B} has property (wN) [(wG) or (wVHS)] if for every increasing web { $\mathcal{B}_{n_1n_2\cdots n_m} : n_i \in \mathbb{N}, 1 \leq i \leq m, m \in \mathbb{N}$ } of \mathcal{B} there exists sequence $(p_n, n \in \mathbb{N})$ of natural numbers such that for each natural number m the set $\mathcal{B}_{p_1p_2\cdots p_m}$ property (N) [(G) or (VHS)] for every $m \in \mathbb{N}$.

The classical theorems of Nikodým-Grothendieck, Valdivia, Grothendieck and Vitali-Hahn-Saks say, respectively, that every σ -algebra \mathcal{A} has properties (N), (sN), (G) and (VHS). The main objective of this conference is to expose our recent results that every σ -algebra \mathcal{A} has properties (wN), (wG)and (wVHS), improving the mentioned four theorems. Moreover applications of these new properties are considered as well as the characterization that a subset \mathcal{B} of an algebra \mathcal{A} has property (wWHS) if and only if \mathcal{B} has property (wN) and \mathcal{A} has property (G) and several open questions.

MSC 2010: 28A60, 46G10

Keywords: algebra and σ -algebra of subsets, bounded finitely additive scalar measure, Nikodým property, Grothendieck property, Vitali-Hahn-Saks property

References

- M. López-Pellicer, Webs and Bounded Finitely Additive Measures. J. Math. Anal. Appl. 210 (1997), 257–267.
- [2] J.V. Ferrando, S. López-Alfonso and M. López-Pellicer, On Nikodým and Rainwater sets for ba(R) and a Problem of M. Valdivia. *Filomat.* 33(8) (2019), 2409–2416.
- [3] S. López-Alfonso, M. López-Pellicer, S. Moll-López, S. On Four Classical Measure Theorems. *Mathematics* 9(5), (2021), Paper No. 526, 17 pp.