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Abstract. Let S be a (multiplicative) commutative semigroup with 0, Z(S)

the set of zero-divisors of S, and n a positive integer. The classical zero-divisor
graph of S is the (simple) graph Γ(S) with vertices Z(S)∗ = Z(S) \ {0}, and

distinct vertices x and y are adjacent if and only if xy = 0. In this talk, we

introduce and study the n-zero-divisor graph of S as the (simple) graph Γn(S)
with vertices Zn(S)∗ = {xn | x ∈ Z(S)} \ {0}, and distinct vertices x and y

are adjacent if and only if xy = 0. Thus each Γn(S) is an induced subgraph of

Γ(S) = Γ1(S). We pay particular attention to diam(Γn(S)), gr(Γn(S)), and
the case when S is a commutative ring with 1 6= 0.
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