ICPAM-VAN 2020 BOOK OF ABSTRACTS

SEPTEMBER 3-5, 2020 VAN - TURKEY

3RD INTERNATIONAL CONFERENCE ON PURE AND APPLIED MATHEMATICS

3rd International Conference on Pure and Applied Mathematics (ICPAM-VAN 2020),Van Yüzüncü Yıl University, Van, TURKEY,September 3-5, 2020

CONFERENCE INFORMATION

e-ISBN 978-975-7616-73-3 Publishing Director Cemil Tunç Publishing Editor Zeynep Kayar Zeynep Kayar fatih Kutlu Web Design Ali Hakan Tor Date of Access 25.09.2020

Van Yüzüncü Yıl University Press-73

3rd International Conference on Pure and Applied Mathematics (ICPAM-VAN 2020), Van Yüzüncü Yıl University, Van, TURKEY, September 3-5, 2020 e-ISBN:978-975-7616-73-3 Web Page: http://icpam.yyu.edu.tr/

Scientific Committee:

Krassimir Atanassov, Bulgarian Academy of Sciences, Sofia, BULGARIA Ayman Badawi, American University of Sharjah, Sharjah, UAE Naim L. Braha, The University of Prishtina, Prishtine, KOSOVO Senay Baydaş, Van Yüzüncü Yıl University, Van, TURKEY Martin J. Bohner, Missouri University of Science and Technology, Rolla, US Amin Boumenir, University of West Georgia (UWG), Carrollton, GA, US Oscar Castillo, Tijuana Institute of Technology, Tijuana, MEXICO Musa Çakır, Van Yüzüncü Yıl University, Van, TURKEY Hakkı Duru, Van Yüzüncü Yıl University, Van, TURKEY Ahmed M. A. El-Sayed, Alexandria University, Alexandria, EGYPT Esin Eskitaşçıoğlu, Van Yüzüncü Yıl University, Van, TURKEY Alireza Khalili Golmankhaneh, Islamic Azad University, Urmia Branch, Urmia, IRAN John R. Graef, University of Tennessee, Chattanooga, US Snezhana G. Hristova, Paisii Hilendarski University of Plovdiv, Plovdiv, BULGARIA Erdal Karaduman, Atatürk University, Erzurum, TURKEY Bülent Karakaş, Van Yüzüncü Yıl University, Van, TURKEY Kirill Sergeevich Lapin, Mordovian State Pedagogical Institute, Saransk, Russia Bingwen Liu, Jiaxing University, Jiaxing, Zheji, P. R. CHINA Heybetkulu S. Mustafayev, Van Yüzüncü Yıl University, Van, TURKEY Juan J. Nieto, Institute of Mathematics, University of Santiago de Compostela, SPAIN Muhammad Aslam Noor, COMSATS University Islamabad (CUI), Faisalabad, PAKISTAN Shahram Rezapour, China Medical University, Taichung 40447, TAIWAN (R.O.C.) Andrei Rontó, Czech Academy of Sciences, CZECH REPUBLIC Mehmet Gıyas Sakar, Van Yüzüncü Yıl University, Van, TURKEY Vitalii I. Slyn'ko, Würzburg University, Würzburg, GERMANY Bayram Şahin, Ege University, Izmir, TURKEY Sebaheddin Sevgin, Van Yüzüncü Yıl University, Van, TURKEY Cesim Temel, Van Yüzüncü Yıl University, Van, TURKEY Jen-Chih Yao, China Medical University, Taichung 40447, TAIWAN (R.O.C.)

3rd International Conference on Pure and Applied Mathematics (ICPAM-VAN 2020), Van Yüzüncü Yıl University, Van, TURKEY, September 3-5, 2020 e-ISBN:978-975-7616-73-3 Web Page: http://icpam.yyu.edu.tr/

Sponsors:

Van Yüzüncü Yıl University Abdullah Gül University Van YYU, Faculty of Science

Organizing Committee:

Hamdullah Şevli (Honorary Board - President of Van Yüzüncü Yıl University) Cemil Tunç (Chair - Dean of Faculty of Science) Necdet Akbal (Secretary) Nagehan Alsoy Akgün (Scientific Program) Ismail Hakkı Denizler (Finance Organizer) Necat Görentaş (Social Program Coordinator) Bahar Kalkan (Local Organization) Zeynep Kayar (Scientific Program and Editor) Fatih Kutlu (Technical Support and Graphic Design) Ömer Küsmüş (Local Organization) Murat Luzum (Local Organization) Onur Saldır (Local Organization) Hayri Topal (Local Organization) Ali Hakan Tor (Web and Technical Support) Osman Tunç (Local Organization) Ramazan Yazgan (Local Organization)

Welcome

Dear Participants,

Welcome to 3rd International Conference on Pure and Applied Mathematics, ICPAM - VAN 2020, Van, Turkey. The conference is organized at Van Yüzüncü Yıl University from September 3rd to September 5th. Since safety and health of our guests, staff and community are of utmost importance to us, at this time, we have made the difficult decision to postpone all travels, as well as participations in ICPAM - VAN 2020 that involve large gatherings. Due to the Covid-19 concerns, this year the third ICPAM - VAN 2020 becomes a virtual conference, that is, it turns into an interactive seminar conducted over the internet (webinar) while the first and the second ones were organized as face to face meetings in 2015 and 2018, respectively. The reason for our 3-year long break is to be a host of another high involvement conference.

The purpose of the virtual conference is to provide a platform where researchers in the field of pure and applied mathematics can present their researches, exchange new ideas, discuss challenging issues, foster future collaborations and interact with each other during these difficult days.

With 9 invited speaker from 7 different countries, 5 parallel sessions (totally 20 sessions) and 97 presentations and more than 100 participants from 13 countries, Austria, Czechia, Germany, India, Iraq, Iran, Italy, Jordan, Kuwait, Nigeria, Pakistan, Russia, Turkey, United Arab Emirates, as well as people from 35 different university from Turkey, ICPAM - VAN 2020 will provide a stimulating opportunity for a global interchange of ideas on recent advances in mathematics.

I would like to express my deep gratitude to Prof. Dr. Hamdullah ŞEVLİ, President of Van Yüzüncü Yıl University, for his encouragement and support in all stages of this conference.

I am grateful to all the participants in the International Conference on Pure and Applied Mathematics, particularly the members of the Scientific and Organizing Committees, the referees and the authors for producing such a high standard conference.

I would also like to thank to the sponsors, Van Yüzüncü Yıl University and Abdullah Gül University for their generous support.

The last but not the least, I would like to give our heartful thanks to participants for their understanding, patience and contributions which make our conference more successful. Since the conference is almost entirely from the registration support of participants, I am grateful for their financial support as well. Thank you all again for the unbelievable amount of support and understanding you have shared during this period. It means more than words can express. We, the members of organizing committee and I, were honored and happy to organize this online meeting which provides online interactions between mathematicians who can not meet, talk and discuss face to face and offers an online collaboration and online social networks.

I wish all of you to stay healthy and safe. I look forward to the day we welcome you all back to Van, city of the sun.

Professor Cemil Tunç Chair Organizer of ICPAM - VAN Organizing Committee

Contents

Welcome	4
Scientific programme in details	9
September 3, 2020	9
Scientific programme table	13
September 4, 2020	14
Scientific programme table	18
Abstracts of invited speakers	19
Ayman BADAWI, Absorbing and weakly absorbing ideals of commutative rings Sergey DASHKOVSKIY, The framework of input-to-state stability with application to in-	20
terconnected systems	21
symmetric solutions in a class of weakly non-linear systems $\ldots \ldots \ldots \ldots \ldots$	22
Billur KAYMAKÇALAN, Zeynep KAYAR, Neslihan NESLİYE PELEN, On Hardy, Cop-	0.0
son, Bennett, Leindler type dynamic inequalities	$23 \\ 24$
Shahram REZAPOUR, On hybrid problems with hybrid boundary value problems	$\frac{24}{25}$
Hans-Peter SCHRÖCKER, Rational kinematics	$\frac{20}{26}$
Hamdullah ŞEVLİ, On the Hyers-Ulam stability of some classical operators	27
Ağacık ZAFER, A new approach to asymptotic integration of differential equations	28
Abstracts of participants' talks	29
Nazan AKDOĞAN, Odd automorphisms of the Grassmann algebra	30
Manal AL-LABADI, Geodetic number of circulant graphs $C_n(\{1,3\})$ Raja'a AL-NAIMI, Abdelrahman YOUSEF, On Toeplitz operators with Poly-quasihomogenou	31
symbol	32
Mehmet Şerif ALDEMİR, Murat CANCAN, Süleyman EDİZ, Ev-degree and ve-degree	
molecular topological properties of silicon carbide structures	33
using the dual reciprocity boundary element method	34
Hasan ALTINBAŞ, Bülent ALTUNKAYA, Levent KULA, V_3 helices in the 5-dimensional	01
Euclidean space	35
Selma ALTINOK, Samet SARIOĞLAN, Generalized spline and its algebraic structure	36
Halil ANAÇ, The numerical solutions of the time-fractional partial differential equations by natural transform decomposition method	37
Bahar ARSLAN, Condition number of a condition number for the structured matrices	38
İsmail ASLAN, <i>N</i> -dimensional φ -variation of nonlinear discrete operators	39
Emel ASLANKARAYIGIT UGURLU, On generalizations of <i>r</i> -ideals of commutative rings	40
Muzaffer ATEŞ, A new paradigm on the stability of second order dynamical systems	41
Abdullah AYDIN, The statistical convergence in Riesz spaces	42
Soner AYDINLIK, Ahmet KİRİS, An efficient numerical method for solving nonlinear sin- gular boundary value problems arising in various physical models	43
Hülya BAĞDATLI YILMAZ, S. Aynur UYSAL, Generalized Einstein tensor for an almost	5
pseudo-Ricci symmetric manifold	44
Alessandro BARBIERO, Asmerilda HITAJ, Goodman and Kruskal's gamma coefficient for	
ordinalized bivariate distributions	45
Senay BAYDAŞ, Bülent KARAKAŞ, Markov matrices on the set of polytopes	46

Emel BİÇER, Cemil TUNÇ, Ulam type stability for higher order functional differential	. –
equation	47
Musa CAKIR, Hakkı DURU, Baransel GUNES, A new numerical approach for solving nonlinear Volterra integro differential equation	48
Engin CAN, Using the curve fitting method to estimate the peak value of the COVID-19	
pandemic with applications \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	49
Erkan CIMEN, Numerical solution of the integro-differential equation containing boundary	
layer	50
Ümit ÇAKAN, Erkan LAZ, A mathematical <i>SVEIR</i> model considered the effect of different	
vaccination rate to subcompartments of susceptibles	51
Rabia ÇAKAN AKPINAR, A new interpretation of horizontal lifts on cotangent bundles .	52
Musa ÇAKMAK, Some new inequalities for n -polynomial convex functions and applications	53
Fatma Ayça ÇETİNKAYA, Some results on a second order conformable dynamic operator	
on time scales	54
Hüsnü Anıl ÇOBAN, Similarity detection of algebraic plane curves using invariants	55
Muhammet Cihat DAGLI, Several relations on certain Hardy sums and two-term exponen-	-
tial sum	56
Cahit DEDE, Ayşe Dilek MADEN, New results on borderenergetic graphs	57
Ulviye DEMİRBİLEK, Volkan ALA, Khanlar R. MAMEDOV, An application of improved	
Bernoulli sub-equation function method to the nonlinear conformable time-fractional	F 0
equation	58
Özlem DENİZ, Mehmet GÜLBAHAR, Some characterizations on totally η -umbilical real hypersurfaces of a complex space form	59
İsmail Hakkı DENİZLER, An Artinian analogue of the Noetherian result on dimension of	99
Noetherian modules	60
Yavuz DİNÇ, Erhan PİŞKİN, Cemil TUNÇ, Lower bounds for blow up time of p-Laplacian	00
equation with damping term	61
Yılmaz DURĞUN, The proper class generated injectively by socle-free modules	62
Muhammet Enes DURMAZ, Musa CAKIR, Gabil M. AMIRALIYEV, Second order numer-	-0
ical method for the singularly perturbed Fredholm integro-differential problem with	
zeroth order reduced equation	63
Murat DÜZ, Solution of Duffing equation with Fourier decomposition method	64
Yılmaz EKINCI, Erkan CIMEN, Musa CAKIR, A numerical approach for solving singularly	
perturbed neutral type delay differential problem	65
Elif ERTEM AKBAS, Murat CANCAN, Kübra ALAN, Reasons for students preparing for	
university examination willing to choose mathematics teaching $\ldots \ldots \ldots \ldots \ldots$	66
Elif ERTEM AKBAS, Murat CANCAN, Ceren GÜRBÜZ, Kübra ALAN, Analysis of the	
difficulties faced by 6th and 7th grade students in the circle sub-learning area teaching	
process through metaphor	67
Sadık EYİDOĞAN, Notes on the Hewitt realcompactification of an orbit space	68
Necat GORENTAS, Seyed Zeynal PASHAEI, On generalized covering spaces and mon-	
odromy groups	69
Melek GÖZEN, Cemil TUNÇ, On the exponential stability of delay neutral equations with	-
periodic coefficients	70
Uğur GÖZÜTOK, Hüsnü Anıl ÇOBAN, Yasemin SAĞIROĞLU, Detecting affine equiva-	71
lences of ruled algebraic surfaces using differential invariants	71
Ece GUNES, Arzu GULEROGLU, Variational iteration method for solving the linear 3D Schrödinger equation	72
Gamze GÜVEN, Hatice ŞAMKAR ¹ , Birdal ŞENOĞLU, Comparison of the performances	12
of the fiducial-based tests using M and MML estimators in one-way ANOVA	73

Turgut HANOYMAK, Ömer KÜSMÜŞ, A novel NTRU-like public key encryption scheme	
over group rings	74 75
Yasemin ISIK, Mehmet SEZGIN, Invariant differential operators of the group $SO(3,2)$ Guven KAYA, Senol KARTAL, Bifurcation analysis of a discrete population model with	75
conformable fractional derivative	76
Zeynep KAYAR, Billur KAYMAKÇALAN, Generalization of Hardy-Copson type inequal-	
ities to time scale nabla calculus	77
ence schemes for the generalized version of diffusion reaction equation	78
Veysel KILINC, Khanlar R. MAMEDOV, On an initial and nonlocal integral boundary	
condition for a mixed type equation	79
Emrah KORKMAZ, The number of <i>m</i> -nilpotent elements in nilpotent subsemigroup of Catalan monoid	80
Erdal KORKMAZ, Cemil TUNC, L^P - solutions integro-differential equations with singular	00
nonlinear kernels	81
Ahmet Zahid KÜÇÜK, On the Chebyshev-S polynomials and their matrix form	82
Ömer KÜSMÜŞ, G -radical units in commutative group rings	83
Kirill LAPIN, Krasnoselsky canonical domains, Lyapunov functions, and the existence of	
Poisson bounded solutions	84
Umar MAGAJI ALHAJI, A. A. AKINREFON, Mother to child transmission of HIV/AIDS	
and its associated factors in Jigawa State Nigeria. A generalized linear spatial mod-	~ ~
elling approach	85
Mahmut MAK, Ayşe CANAN, Natural mates of Frenet curves in three-dimensional Lie group	86
Kasım MANSIZ, Cemil TUNÇ, A note on the Ψ -stability of solutions of Volterra integro- differential equations	87
differential equations	88
Emmanuel OMOKHUALE, Unsteady heat and mass transfer magnetohydrodynamic (MHD)	00
convective Couette flow with thermal radiation using finite element method (FEM) .	89
Begum OZMUSUL, Tugbahan Ş. DIZMAN, Ali BOZKURT, Learning difficulties in limit	
primary mathematics teachers candidates	90
Tufan ÖZDIN, Elif Basak TURKOGLU, Regularity conditions for endomorphism rings of	
Leavitt path algebras	91
Erhan PİŞKİN, Hazal YÜKSEKKAYA, Blow up of solutions for a logarithmic quasilinear	
hyperbolic equation with delay term	92
Mohd QASIM, Rate of approximation for modified Lupaş-Jain-Beta operators	93
Muhammad SAGIR ALIYU, Mansur BABAGANA, Ibrahim YUSUF, Analysis of mean	94
time to failure of four series parallel systems with mixed standby units	94
differential invariants	95
Çağrı SAĞLAM, Mustafa Kerem YÜKSEL, Dynamic implications of persistence in status	50
concern	96
F. Müge SAKAR, Adnan CANBULAT, Maclaurin coefficient bounds for a subclass of bi-	
univalent functions associated with k-analogue of Bessel function	97
Samet SARIOĞLAN, Selma ALTINOK, Freeness of generalized spline modules over poly-	
nomial rings	98
Harun SELVİTOPİ, Finite element solution of MHD flow in a T-Junction	99
	100
Engin ŞENEL, Figen OKE, On the automorphisms of generalized algebraic geometry codes	
Hakan ŞIMŞEK, Similar and self-similar null Cartan curves in Minkowski-Lorentzian spaces i	102
Cesim TEMEL, Hybrid fixed point theorems for the multi-valued operators in WC-Banach	109
algebras	103

Ali Hakan TOR, Some numerical results on the software HANSO	104
Feride TUĞRUL, Mehmet ÇİTİL, Evaluating the factors affecting success of students with the intuitionistic fuzzy PROMETHEE method	105
Cemil TUNÇ, İrem AKBULUT ARIK, On the qualitative properties of solutions of certain	
neutral equations	106
Cemil TUNÇ, Osman TUNÇ, On the qualitative criteria for integro-differential equations with Caputo fractional derivative and constant delays	107
-	107
Osman TUNÇ, On the qualitative analysis of solutions of Volterra integro-differential equa-	100
tions with infinite delay	108
Sevket UNCU, Erkan CIMEN, An approximate method for a delay differential equation	100
with layer behavior	109
Nazia URUS, Amit Kumar VERMA, Well ordered monotone iterative technique for a class	
of 2^{nd} order nonlinear 4-point Neumann BVPs $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	110
Rıdvan YAPRAK, Erhan COŞKUN, Trans_maxima; A Maxima package for analytical so-	
lution of one dimensional linear system of transport equations	111
Ayşe YAVUZ TAŞCI, Füsun ÖZEN ZENGİN, On Z-symmetric manifold admitting projec-	
tive curvature tensor	112
Ramazan YAZGAN, On the periodic solutions for a class of nonlinear n -th order differential	
equation with mixed delays	113
Nazlı YAZICI GÖZÜTOK, Maps corresponding to $\Gamma_0(N)$ for a non-transitive action of the	110
normalizer	11/
Merve YEŞİLYURT, Ümit ERTUĞRUL, Some remarks on triangular norms on bounded	114
	115
Abdullah YIGIT, On the asymptotic stability of a nonlinear system with multiple delays .	
Awais YOUNUS, Onsia NISAR, On discrete convex optimization of interval valued functions	3117

Scientific programme in details

September 3, 2020

Room 1 (Invited speakers) Chair: Cemil TUNÇ

09:00-09:15 Opening Ceremony
09:15-10:00 Hamdullah ŞEVLİ On the Hyers-Ulam stability of some classical operators
10:00-10:45 Shahram REZAPOUR On hybrid problems with hybrid boundary value problems
10:45-11:00 Coffee Break
11:00-11:45 Ağacık ZAFER A new approach to asymptotic integration of differential equations
11:45-12:30 Billur KAYMAKÇALAN, Zeynep KAYAR, Neslihan NESLİYE PELEN On Hardy, Copson, Bennett, Leindler type dynamic inequalities
12:30-14:10 Lunch Break

14:10-14:30 Kasım MANSIZ, Cemil TUNÇ

A note on the Ψ -stability of solutions of Volterra integro-differential equations

14:30-14:50 **Cesim TEMEL**

Hybrid fixed point theorems for the multi-valued operators in WC-Banach algebras

14:50-15:10 Muzaffer ATEŞ

A new paradigm on the stability of second order dynamical systems

15:10-15:30 Cemil TUNÇ, Osman TUNC

On the qualitative criteria for integro-differential equations with Caputo fractional derivative and constant delays

15:30-15:50 Kirill LAPIN

Krasnoselsky canonical domains, Lyapunov functions, and the existence of Poisson bounded solutions

15:50-16:10 Coffee Break

```
Room 1 Chair: Ramazan YAZGAN
```

16:10-16:30 Fatma Ayça ÇETİNKAYA

Some results on a second order conformable dynamic operator on time scales 16:30-16:50 Guven KAYA, Senol KARTAL

Bifurcation analysis of a discrete population model with conformable fractional derivative

16:50-17:10

17:10-17:30 Zeynep KAYAR, Billur KAYMAKÇALAN

Generalization of Hardy-Copson type inequalities to time scale nabla calculus

Room 2 Chair: Ali Hakan TOR

14:10-14:30	Halil	ANA	\mathbf{C}
11110 11100	LIGHT		S

The numerical soluitons of the time-fractional partial differential equations by natural transform decomposition method

14:30-14:50 Ece GUNES, Arzu GULEROGLU

Variational iteration method for solving the linear 3D Schrödinger equation 14:50-15:10 Yavuz DİNÇ, Erhan PİŞKİN, Cemil TUNC

Lower bounds for blow up time of p-Laplacian equation with damping term

15:10-15:30 Ulviye DEMİRBİLEK, **Volkan ALA**, Khanlar R. MAMEDOV

An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional equation

15:30-15:50 Çağrı SAĞLAM, Mustafa Kerem YÜKSEL

Dynamic implications of persistence in status concern

15:50-16:10 Coffee Break

Room 2 Chair: Osman TUNÇ

16:10-16:30 Rıdvan YAPRAK, Erhan COŞKUN

Trans_maxima; A Maxima package for analytical solution of one dimensional linear system of transport equations

16:30-16:50 Erhan PİŞKİN, **Hazal YÜKSEKKAYA**

Blow up of solutions for a logarithmic quasilinear hyperbolic equation with delay term 16:50-17:10 **Veysel KILINC**, Khanlar R. MAMEDOV

On an initial and nonlocal integral boundary condition for a mixed type equation 17:10-17:30 **Engin SENEL**, Figen ÖKE

On the automorphisms of generalized algebraic geometry codes

17:30-17:50 **Muhammad SAGIR ALIYU**, Mansur BABAGANA, Ibrahim YUSUF Analysis of mean time to failure of four series parallel systems with mixed standby units

Room 3 Chair: Ömer KÜSMÜŞ

14:10-14:30 Merve YEŞİLYURT, Ümit ERTUĞRUL

Some remarks on triangular norms on bounded lattices

14:30-14:50 Nazlı YAZICI GÖZÜTOK

Maps corresponding to $\Gamma_0(N)$ for a non-transitive action of the normalizer

14:50-15:10 Cahit DEDE, Ayşe Dilek MADEN

New results on borderenergetic graphs

15:10-15:30 Mehmet Şerif ALDEMİR, Murat CANCAN, Süleyman EDİZ

Ev-degree and ve-degree molecular topological properties of silicon carbide structures \ddot{u}

15:30-15:50 **Pınar ŞAŞMAZ**, Murad ÖZKOÇ

On contra $we^\ast\text{-}\mathrm{continuous}$ functions

15:50-16:10 Coffee Break

Room 3 Chair: Murat LUZUM

16:10-16:30 **Selma ALTINOK**, Samet SARIOĞLAN Generalized spline and its algebraic structure

16:30-16:50 Samet SARIOĞLAN, Selma ALTINOK

Freeness of generalized spline modules over polynomial rings

16:50-17:10 Manal AL-LABADI

Geodetic number of circulant graphs $C_n(\{1,3\})$

17:10-17:30 Emrah KORKMAZ

The number of m-nilpotent elements in nilpotent subsemigroup of Catalan monoid

Room 4 Chair: Nagehan ALSOY-AKGÜN

14:10-14:30

14:30-14:50 Erkan CIMEN

Numerical solution of the integro-differential equation containing boundary layer 14:50-15:10 **Sevket UNCU**, Erkan CIMEN

An approximate method for a delay differential equation with layer behavior

15:10-15:30 **Yılmaz EKINCI**, Erkan CIMEN, Musa CAKIR A numerical approach for solving singularly perturbed neutral type delay differential

problem

15:30-15:50 Musa CAKIR, Hakkı DURU, Baransel GUNES

A new numerical approach for solving nonlinear Volterra integro differential equation 15:50-16:10 Coffee Break

Room 4 Chair: Ömer KÜSMÜŞ

16:10-16:30 Emmanuel OMOKHUALE

Unsteady heat and mass transfer magnetohydrodynamic (MHD) convective Couette flow with thermal radiation using Finite Element Method (FEM)

16:30-16:50 Nagehan ALSOY-AKGÜN

Numerical simulation of two-dimensional sine-Gordon equation using the dual reciprocity boundary element method

16:50-17:10

17:10-17:30 Ali Hakan TOR

Some numerical results on the software HANSO

17:30-17:50 Harun SELVİTOPİ

Finite element solution of MHD flow in a T-Junction

Room 5 Chair: Osman TUNÇ

14:10-14:30 Mahmut MAK, Ayşe CANAN

Natural mates of Frenet curves in three-dimensional Lie group

14:30-14:50 Hüsnü Anıl ÇOBAN

Similarity detection of algebraic plane curves using invariants

14:50-15:10 Uğur GÖZÜTOK, Hüsnü Anıl ÇOBAN, Yasemin SAĞIROĞLU

Detecting affine equivalences of ruled algebraic surfaces using differential invariants 15:10-15:30 Yasemin SAĞIROĞLU, Uğur GÖZÜTOK

Detecting equivalences of hypersurfaces using differential invariants

15:30-15:50 Hasan ALTINBAŞ, Bülent ALTUNKAYA, Levent KULA

 $V_{\rm 3}$ helices in the 5-dimensional Euclidean space

15:50-16:10 Coffee Break

Room 5 Chair: Bahar KALKAN

16:10-16:30 Hakan ŞİMŞEK

Similar and self-similar null Cartan curves in Minkowski-Lorentzian spaces 16:30-16:50 Rabia ÇAKAN AKPINAR

A new interpretation of horizontal lifts on cotangent bundles

16:50-17:10 Ayşe YAVUZ TAŞCI, Füsun ÖZEN ZENGİN

On Z-symmetric manifold admitting projective curvature tensor 17:10-17:30 Hülya BAĞDATLI YILMAZ, S. Aynur UYSAL

Generalized Einstein tensor for an almost pseudo-Ricci symmetric manifold

		Š	September 3, 2020 Thursday	A	
Time	Room 1	Room 2	Room 3	Room 4	Room 5
Chair	CEMİL TUNÇ				
09:00-09:15	Opening Ceremony		Opening	Opening Ceremony	
09:15-10:00	HAMDULLAH ŞEVLİ		Invited	Invited Speaker	
10:00-10:45	SHAHRAM REZAPOUR		Invited	Invited Speaker	
10:45-11:00			Coffee	Coffee Break	
11:00-11:45	AĞACIK ZAFER		Invited	Invited Speaker	
11:45-12:30	BİLLUR KAYMAKÇALAN		Invited	Invited Speaker	
12:30-14:10	-		Lunch	Lunch Break	
Time	Room 1	Room 2	Room 3	Room 4	Room 5
Chair	ZEYNEP KAYAR	ALİ HAKAN TOR	ÖMER KÜSMÜŞ	NAGEHAN ALSOY- AKGÜN	OSMAN TUNÇ
14:10-14:30	KASIM MANSIZ	HALİL ANAÇ	MERVE YEŞİLYURT		AYSE CANAN
14:30-14:50	CESIM TEMEL	ECE GÜNEŞ	NAZLI YAZICI GÖZÜTOK	ERKAN ÇİMEN	HÜSNÜ ANIL ÇOBAN
14:50-15:10	MUZAFFER ATEŞ	YAVUZ DİNÇ	CAHİT DEDE	SEVKET UNCU	UĞUR GÖZÜTOK
15:10-15:30	CEMİL TUNÇ	VOLKAN ALA	SÜLEYMAN EDİZ	YILMAZ EKİNCİ	YASEMİN SARIOĞLU
15:30-15:50	KIRILL LAPIN	MUSTAFA KEREM YÜKSEL	PINAR ŞAŞMAZ	BARANSEL GÜNEŞ	HASAN ALTINBAŞ
15:50-16:10			Coffee Break	Break	
Time		Room 2	Room 3	Room 4	Room 5
Chair	RAMAZAN YAZ- GAN	OSMAN TUNÇ	MURAT LUZUM	ÖMER KÜSMÜŞ	BAHAR KALKAN
16:10-16:30	FATMA AYÇA ÇETİNKAYA	RIDVAN YAPRAK	SELMA ALTINOK	EMMANUEL OMOKHUALE	HAKAN ŞİMŞEK
16:30-16:50	GÜVEN KAYA	HAZAL YÜKSEKKAYA	SAMET SARIOĞLAN	NAGEHAN ALSOY- AKGÜN	RABIA ÇAKAN AKPINAR
16:50-17:10		VEYSEL KILINC	MANAL AL-LABADI		AYSE YAVUZ TAŞCI
17:10-17:30	ZEYNEP KAYAR	ENGIN ŞENEL	EMRAH KORKMAZ	ALİ HAKAN TOR	HULYA BAGDATLI YIL- MAZ
17:30-17:50		MUHAMMAD SAGIR ALIYU		HARUN SELVİTOPİ	

Room 1 (Invited speakers) Chair: Cemil TUNÇ

9:30-10:15 Sergey DASHKOVSKIY The framework of input-to-state stability with application to interconnected systems 10:15-11:00 Alireza KHALILI GOLMANKHANEH Fractal calculus an extension of ordinary calculus 11:00-11:45 Michal FEČKAN, András RONTÓ, Nataliya DILNA On the existence and stability of symmetric solutions in a class of weakly non-linear systems

11:45-13:30 Lunch Break

Room 1 (Invited speakers) Chair: Cemil TUNÇ

13:30-14:15 Hans-Peter SCHRÖCKER

Rational kinematics

14:15-15:00 Ayman BADAWI

Absorbing and weakly absorbing ideals of commutative rings

15:00-15:15 Coffee Break

Room 1 Chair: Osman TUNÇ

15:15-15:35 Erdal KORKMAZ, Cemil TUNÇ

 L^{P} - solutions integro-differential equations with singular nonlinear kernels

15:35-15:55 Ramazan YAZGAN

On the periodic solutions for a class of nonlinear n-th order differential equation with mixed delays

15:55-16:15 Abdullah YİĞİT

On the asymptotic stability of a nonlinear system with multiple delays 16:15-16:35 Melek GÖZEN, Cemil TUNC

On the exponential stability of delay neutral equations with periodic coefficients

16:35-16:55 Emel BİÇER, Cemil TUNÇ

Ulam type stability for higher order functional differential equation 16:55-17:10 Coffee Break

Room 1 Chair: Ramazan YAZGAN

17:10-17:30 Cemil TUNÇ, **İrem AKBULUT ARIK** On the qualitative properties of solutions of certain neutral equations

17:30-17:50 Najwa R. MUSTAFA

On solving nonlinear Fredholm integral equation with optimization

17:50-18:10 **Osman TUNÇ**

On the qualitative analysis of solutions of Volterra integro-differential equations with infinite delay

18:10-18:30 Muhammet Enes DURMAZ, Musa CAKIR, Gabil M. AMIRALIYEV, Second order numerical method for the singularly perturbed Fredholm integrodifferential problem with zeroth order reduced equation

Room 2 Chair: Murat LUZUM

15:15-15:35 Emel ASLANKARAYIGIT UGURLU On generalizations of *r*-ideals of commutative rings
15:35-15:55 Ömer KÜSMÜŞ *G*-radical units in commutative group rings
15:55-16:15 Turgut HANOYMAK, Ömer KÜSMÜŞ A novel NTRU-like public key encryption scheme over group rings
16:15-16:35 Tufan ÖZDİN, Elif Basak TURKOGLU Regularity conditions for endomorphism rings of Leavitt path algebras
16:35-16:55 Nazan AKDOĞAN Odd automorphisms of the Grassmann algebra

16:55-17:10 Coffee Break

Room 2 Chair: Ömer KÜSMÜŞ

17:10-17:30 Bahar ARSLAN

Condition number of a condition number for the structured matrices 17:30-17:50 Özlem DENİZ, Mehmet GÜLBAHAR

Some characterizations on totally $\eta-\text{umbilical}$ real hypersurfaces of a complex space form

17:50-18:10 Yılmaz DURĞUN

The proper class generated injectively by socle-free modules

18:10-18:30 İsmail Hakkı DENİZLER

An Artinian analogue of the Noetherian result on dimension of Noetherian modules

Room 3 Chair: Zeynep KAYAR

15:15-15:35 Elif ERTEM AKBAS, Murat CANCAN, Kübra ALAN

Reasons for students preparing for university examination willing to choose mathematics teaching

15:35-15:55 Elif ERTEM AKBAS, Murat CANCAN, Ceren GÜRBÜZ, **Kübra ALAN** Analysis of the difficulties faced by 6th and 7th grade students in the circle sub-learning area teaching process through metaphor

15:55-16:15 Feride TUĞRUL, Mehmet ÇİTİL

Evaluating the factors affecting success of students with the intuitionistic fuzzy PROMETHEE method

16:15-16:35 **Begum OZMUSUL**, Tugbahan Ş. DIZMAN, Ali BOZKURT Learning difficulties in limit primary mathematics teachers candidates

16:35-16:55 Nazia URUS, Amit Kumar VERMA

Well ordered monotone iterative technique for a class of 2^{nd} order nonlinear 4-point Neumann BVPs

16:55-17:10 Coffee Break

Room 3 Chair: Ali Hakan TOR
17:10-17:30 Ahmet Zahid KÜÇÜK On the Chebyshev-S polynomials and their matrix form
17:30-17:50 Muhammet Cihat DAĞLI
Several relations on certain Hardy sums and two-term exponential sum
17:50-18:10 Yasemin ISIK, Mehmet SEZGIN
Invariant differential operators of the group SO(3,2) 18:10-18:30 Sadık EYİDOĞAN
Notes on the Hewitt realcompactification of an orbit space
Room 4 Chair: Nagehan ALSOY-AKGÜN
15:15-15:35 Ümit ÇAKAN, Erkan LAZ
A mathematical <i>SVEIR</i> model considered the effect of different vaccination rate to
subcompartments of susceptibles
15:35-15:55 Umar MAGAJI ALHAJI, A. A. AKINREFON
Mother to child transmission of HIV/AIDS and its associated factors in Jigawa
State Nigeria. A generalized linear spatial modelling approach
15:55-16:15 Soner AYDINLIK, Ahmet KİRİS
An efficient numerical method for solving nonlinear singular boundary value
problems arising in various physical models 16:15-16:35 Engin CAN
Using the curve fitting method to estimate the peak value of the COVID-19
pandemic with applications
16:35-16:55 Awais YOUNUS, Onsia NISAR
On discrete convex optimization of interval valued functions
16:55-17:10 Coffee Break
Room 4 Chair: Bahar KALKAN
17:10-17:30
17:30-17:50 Şenay BAYDAŞ, Bülent KARAKAŞ
Markov matrices on the set of polytopes
17:50-18:10 Gamze GÜVEN, Hatice ŞAMKAR, Birdal ŞENOĞLU
Comparison of the performances of the fiducial-based tests using M and MML
estimators in one-way ANOVA
18:10-18:30 Alessandro BARBIERO, Asmerilda HITAJ Goodman and Kruskal's gamma coefficient for ordinalized bivariate distributions
Googman and Muskai's gamma coefficient for ordinalized bivariate distributions

Room 5 Chair: Hayri TOPAL

15:15-15:35 Musa ÇAKMAK Some new inequalities for n-polynomial convex functions and applications
15:35-15:55 İsmail ASLAN N-dimensional φ-variation of nonlinear discrete operators
15:55-16:15 F. Müge SAKAR, Adnan CANBULAT Maclaurin coefficient bounds for a subclass of bi-univalent functions associated with k-analogue of Bessel function
16:15-16:35 Mohd QASIM Rate of approximation for modified Lupaş-Jain-Beta operators
16:35-16:55 Sheerin KAYENAT, Amit K. VERMA Mickens' type exact and nonstandard finite difference schemes for the generalized version of diffusion reaction equation
16:55-17:10 Coffee Break

Room 5 Chair: Hayri TOPAL

17:10-17:30 Murat DÜZ

Solution of Duffing equation with Fourier decomposition method

17:30-17:50 Abdullah AYDIN

The statistical convergence in Riesz spaces

17:50-18:10 Raja'a AL-NAIMI, Abdelrahman YOUSEF

On Toeplitz operators with Poly-quasihomogenous symbol

18:10-18:30 **Necat GORENTAS**, Seyed Zeynal PASHAEI On generalized covering spaces and monodromy groups

			Sentember 4. 2020 Friday		
Time	Room 1	Room 2	Room 3	Room 4	Room 5
Chair	CEMİL TUNÇ				
09:30-10:15	SERGEY DASHKOVSKIY		Invited Speaker	Speaker	
10:15-11:00	ALIREZA KHALILI GOLMANKHANEH		Invited Speaker	Speaker	
11:00-11:45	ANDRÁS RONTÓ		Invited Speaker	Speaker	
11:45-13:30			Lunch Break	Break	
Chair	CEMİL TUNÇ				
13:30-14:15	HANS-PETER SCHRÖCKER		Invited Speaker	Speaker	
14:15-15:00	AYMAN BADAWI		Invited Speaker	Speaker	
15:00-15:15			Coffee Break	Break	
Time	Room 1	Room 2	Room 3	Room 4	Room 5
Chair	OSMAN TUNÇ	MURAT LUZUM	ZEYNEP KAYAR	NAGEHAN ALSOY- AKGÜN	HAYRİ TOPAL
15:15-15:35	ERDAL KORKMAZ	EMEL ASLANKARAYİĞİT UĞURLU	KÜBRA ALAN	ÜMİT ÇAKAN	MUSA ÇAKMAK
15:35-15:55	RAMAZAN YAZGAN	ÖMER KÜSMÜŞ	KÜBRA ALAN	UMAR MAGAJI AL- HAJI	İSMAİL ASLAN
15:55-16:15	ABDULLAH YİĞİT	TURGUT HANOYMAK	FERIDE TUĞRUL	SONER AYDINLIK	F. MÜGE SAKAR
16:15-16:35	MELEK GÖZEN	TUFAN ÖZDİN	BEGÜM OZMUSUL	ENGIN CAN	MOHD QASIM
16:35-16:55	EMEL BİÇER	NAZAN AKDOĞAN	NAZIA URUS	AWAIS YOUNUS	SHEERIN KAYENAT
16:55-17:10			Coffee Break	3reak	
Time		Room 2	Room 3	Room 4	Room 5
Chair	RAMAZAN YAZ- GAN	ÖMER KÜSMÜŞ	ALİ HAKAN TOR	BAHAR KALKAN	HAYRİ TOPAL
17:10-17:30	IREM AKBULUT ARIK	BAHAR ARSLAN	AHMET ZAHİD KÜÇÜK		MURAT DÜZ
17:30-17:50	NAJWA R. MUSTAFA	ÖZLEM DENİZ	MUHAMMET CIHAT DAĞLI	BÜLENT KARAKAŞ	ABDULLAH AYDIN
17:50-18:10	OSMAN TUNÇ	YILMAZ DURĞUN	YASEMİN IŞIK	GAMZE GÜVEN	RAJA'A AL-NAIMI
18:10-18:30	MUSA ÇAKIR	İSMAİL HAKKI DENİZLER	SADIK EYİDOĞAN	ALESSANDRO BARBI- ERO	NECAT GÖRENTAŞ

Abstracts of invited speakers

Absorbing and weakly absorbing ideals of commutative rings

AYMAN BADAWI

The American University of Sharjah, Sharjah, United Arab Emirates

email: abadawi@aus.edu

Let R be a commutative ring with $1 \neq 0$. Recall that a proper ideal I of R is called a 2-absorbing ideal of R if $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. A more general concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let $n \geq 1$ be a positive integer. A proper ideal I of R is called an *n*-absorbing ideal of R if $a_1, a_2, ..., a_{n+1} \in R$ and $a_1a_2 \cdots a_{n+1} \in I$, then there are n of the a_i 's whose product is in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal of R). In this talk, we will state recent developments on the study of absorbing ideals of commutative rings.

MSC 2010: 13A05, 13F05, 05A15, 13G05

Keywords: prime ideal, primary ideal, 1-absorbing primary ideal, 2-absorbing primary ideal, 2absorbing ideal, weakly prime ideal, weakly primary ideal, weakly 2-absorbing primary ideal, weakly semiprime ideal, n-absorbing ideal

- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings. Comm. Algebra 39 (2011), 1646–1672.
- [2] D. F. Anderson and A. Badawi, On (m,n)-closed ideals of commutative rings. J. Algebra Appl. 16 (2017), no. 1, 1750013, 21 pp.
- [3] A. Badawi, On 2-absorbing ideals of commutative rings. Bull. Austral. Math. Soc. **75** (2007), 417–429.
- [4] A. Badawi, *n*-absorbing ideals of commutative rings and recent progress on three conjectures: a survey. Rings, polynomials, and modules. *Springer, Cham*, (2017), 33-52, .
- [5] A. Badawi, M. Issoual and N. Mahdou, On n-absorbing ideals and (m,n)-closed ideals in trivial ring extensions of commutative rings, (Available on Line), to appear in Journal of Algebra and Its Applications.
- [6] D. Bennis and B. Fahid, Rings in which every 2-absorbing ideal is prime. *Beitr Algebra Geom* 59 (2018), 391–396.
- [7] P. J. Cahen, M. Fontana, S. Frisch, and S. Glaz, Open problems in commutative ring theory. Commutative Algebra. Springer, (2014), 353–375
- [8] H. Seung Choi and A. Walker, The radical of an n-absorbing ideal. arXiv:1610.10077 [math.AC] (2016) (to appear in Journal of Commutative Algebra).

The framework of input-to-state stability with application to interconnected systems

SERGEY DASHKOVSKIY

University of Würzburg, Würzburg, Germany

email: sergey.dashkovskiy@uni-wuerzburg.de

The notion of input-to-state stability (ISS) was introduced in [1] for nonlinear finite dimensional systems of the form

$$\dot{x} = f(x, d), \quad x(t) \in \mathbb{R}^n, \quad d(t) \in \mathbb{R}^m, \quad t \ge 0,$$
(1)

with an unknown disturbance $d \in L^{loc}_{\infty}$. This notion extend the usual Lyapunov stability to the case of systems with input signals. Several weaker versions of this notion appeared soon after that in the literature together with different characterizations of these notions. Later these notions were extended to other classes of systems, including discrete time systems, switched, impulsive and hybrid systems, systems with time delay as well as systems given in form of partial differential equations, see [2], [3].

This presentation we begin with an introduction to ISS and related notions illustrated by means of simple practical examples. Characterizations of these notions, in particular by means of Lyapunov functions, will be provided and illustrated as well. We will show that this framework is very fruitful for stability investigation of nonlinear networks. We will explain how the small-gain theory in the ISS framework can be applied to study stability of interconnected systems, including large scale multi-agent systems.

MSC 2010: 37C75, 93D30, 93C10, 93C25

Keywords: Stability, nonlinear systems, interconnected systems, Input-to-state stability, multiagent systems, Lyapunov methods

- E. D. Sontag, Smooth stabilization implies coprime factorization. *IEEE Trans. Automat. Control* 34 (1989), no. 4, 435–443; doi: 10.1109/9.28018.
- [2] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods. *Nonlinear Analysis: Hybrid Systems* 6 (2012), no. 3, 899–915; doi.org/10.1016/j.nahs.2012.02.001.
- [3] S. Dashkovskiy, and A. Mironchenko, Input-to-state stability of infinite-dimensional control systems. Math. Contr. Sign. Syst. 25 (2013), no. 1, 1–35; doi 10.1007/s00498-012-0090-2.

On the existence and stability of symmetric solutions in a class of weakly non-linear systems

MICHAL FEČKAN¹, <u>ANDRÁS RONTÓ</u>², NATALIYA DILNA³

¹ Comenius University, Bratislava, Slovakia

² Institute of Mathematics of the Czech Academy of Sciences and Brno University of Technology,

Brno, Czech Republic

³ Mathematical Institute of the Slovak Academy of Sciences, Bratislava, Slovakia

emails: ¹Michal.Feckan@fmph.uniba.sk; ²ronto@math.cas.cz; ³nataliya.dilna@mat.savba.sk

For a class of systems of weakly non-linear ordinary differential equations

$$u'(t) = \varepsilon h(t, u(t)), \qquad t \in J,$$

where $J \subset \mathbb{R}$ is an open interval and ε is a small parameter, we study solutions satisfying the condition

$$u(\psi(t)) = Au(t), \qquad t \in J,$$

which, with different choices of the function $\psi: J \to J$ and the matrix A, includes various frequently encountered properties (e.g., oddness, periodicity, antiperiodicity or affine periodicity). It is assumed that the continuous function h is smooth in the space variable and satisfies a suitable invariance condition.

For solutions having the property mentioned, effective existence and asymptotic stability conditions are obtained, which are closely related to classical results. The asymptotic stability conditions are formulated in terms of either logarithmic norms or spectral abscissas of certain matrices that can be found explicitly.

We review the main results, outline the ideas of proof, and mention the relation to known statements.

MSC 2010: 34C14, 34C15, 34C25

Keywords: Odd solution, periodic solution, anti-periodic solution, averaging, stability

References

 M. Fečkan, A. Rontó, and N. Dilna, On a kind of symmetric weakly non-linear ordinary differential systems. *Bull. Sci.* 140 (2016), no. 2, 188–230; doi: 10.1016/j.bulsci.2015.11.003.

On Hardy, Copson, Bennett, Leindler type dynamic inequalities

BİLLUR KAYMAKÇALAN¹, ZEYNEP KAYAR², NESLİHAN NESLİYE PELEN³

¹ Çankaya University, Ankara, Turkey
 ² Van Yuzuncu Yil University, Van, Turkey
 ³ Ondokuz Mayıs University, Samsun, Turkey

emails: ¹billurkaymakcalan@gmail.com; ²zeynepkayar@yyu.edu.tr; ³neslihan.pelen@omu.edu.tr

Hardy's celebrated inequalities [1, 2] in both discrete and continuous forms gave inspirations to many mathematicians such as Copson, Bennett, Leindler and so on. They generalized and improved Hardy's inequalities and their reverse versions, which are called Bennett-Leindler inequalities, for both cases seperately. In order to avoid proving results twice, once for continuous functions and once for functions defined on discrete sets, time scale unification of these inequalities have appeared in the literature by using delta and nabla derivatives and integrals. Since these unifications are not adequate in the theoretical research of some differential and difference equations and in certain computational applications such as adaptive computing and multiscale methods [3], the diamond alpha, \diamond_{α} , calculus, which utilizes convex linear combinations of delta and nabla derivatives and integrals, has been introduced by Sheng et al. [3].

In this talk we give a survey for Hardy, Copson, Bennett and Leindler type dynamic inequalities on time scale delta and nabla calculii. Then we present two kinds of dynamic Bennett-Leindler type inequalities via the diamond alpha calculus. The former, which is composed of inequalities of mixed type containing delta, nabla and diamond alpha integrals together, strengthens and binds the existing results obtained for time scale delta and nabla calculii. The latter, which consists of inequalities including only diamond alpha integrals, harmonizes and unifies the foregoing results. Moreover these inequalities provide novel and better results in the special cases.

MSC 2010: 26D10, 26D15, 26E70

Keywords: Nabla derivative, Hardy inequality, Copson inequality, Bennett inequality, Leindler inequality

- [1] G. H. Hardy, Notes on a theorem of Hilbert. Math. Z. 6 (1920), no. 3-4, 314-317.
- [2] G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals. Messenger Math. 54 (1925), 150-156.
- [3] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications. *Nonlinear Anal. Real World Appl.* 7 (2006), no. 3, 395-413.

Fractal calculus an extension of ordinary calculus

ALIREZA KHALILI GOLMANKHENEH

Islamic Azad University, Urmia, Iran.

alirezakhalili2005@gmail.com;

Fractal calculus was formulated recently as an extension of standard calculus. This framework was generalized and applied in several branches of science and engineering. Fractal calculus, like ordinary calculus, has both local and non-local versions. An advantage of this type of fractal calculus is that it is algorithmic, which makes it more suitable for applications like ordinary calculus. Many frameworks for calculus on fractals were formulated, but some of them are ad-hoc or non-algorithmic and, as a result, difficult to utilize in science. Fractal calculus involves fractional derivatives that have geometrical as well as physical meaning. In this work, we present the local and nonlocal fractal calculus and applications in physics such as statistical mechanics and quantum physics.

MSC 2010: 28A80, 44A10, 58C35

Keywords: Local fractal derivatives, non-local fractal derivative, fractal calculus, Cantor-like set

- A. K. Golmankhaneh, A review on application of the local fractal calculus. Num. Com. Meth. Sci. Eng. 1 (2019), no. 2, 57–66.
- [2] A. K. Golmankhaneh, C. Tunc, S. Measoomy Nia, A. K. Golmankhaneh, A review on local and non-local fractal calculus. *Num. Com. Meth. Sci. Eng.* 1 (2019), no. 1, 19–31.
- [3] A. K. Golmankhaneh, A. Fernandez, Random variables and stable distributions on fractal Cantor sets. *Fractal and Fractional* **3** (2019), no. 2, 31.
- [4] A. K. Golmankhaneh, C. Tunc, Analogues to Lie method and Noether's theorem in fractal calculus. *Fractal and Fractional* **3** (2019), no. 2 25.
- [5] A. K. Golmankhaneh, C. Cattani, Fractal logistic equation. Fractal and Fractional 3 (2019), no. 2, 41.

On hybrid problems with hybrid boundary value problems

SHAHRAM REZAPOUR

Azarbaijan Shahid Madani University, Tabriz, Iran

email: rezapourshahram@yahoo.ca

By mixing and using some idea, we are going to investigate the fractional hybrid problem for the thermostat model as

$${}^{c}\mathcal{D}_{0}^{p}\left(\frac{z(t)}{h(t,z(t))}\right) + \Phi(t,z(t)) = 0, \quad (t \in [0,1])$$

$$\tag{1}$$

with the hybrid boundary value conditions

$$\begin{cases} \mathcal{D}\big(\frac{z(t)}{h(t,z(t))}\big)\Big|_{t=0} = 0, \\ \lambda^{c} \mathcal{D}_{0}^{p-1}\big(\frac{z(t)}{h(t,z(t))}\big)\Big|_{t=1} + \big(\frac{z(t)}{h(t,z(t))}\big)\Big|_{t=\eta} = 0, \end{cases}$$
(2)

where $p \in (1, 2], p - 1 \in (0, 1], \eta \in [0, 1], \mathcal{D} = \frac{\mathrm{d}}{\mathrm{d}t}, \lambda$ is a positive real parameter, ${}^{c}\mathcal{D}_{0}^{\gamma}$ is the Caputo derivation of fractional order $\gamma \in \{p, p - 1\}$, the function $\Phi : [0, 1] \times \mathbb{R} \to \mathbb{R}$ is continuous and $h \in C([0, 1] \times \mathbb{R}, \mathbb{R} \setminus \{0\}).$

Also, we investigate the hybrid fractional differential inclusion model of thermostat as

$$-^{c}\mathcal{D}_{0}^{p}\left(\frac{z(t)}{h(t,z(t))}\right) \in \mathcal{G}(t,z(t)), \qquad t \in [0,1]$$

$$\tag{3}$$

with three-point hybrid boundary value conditions

$$\begin{cases} \mathcal{D}\left(\frac{z(t)}{h(t,z(t))}\right)\Big|_{t=0} = 0\\ \lambda^{c} \mathcal{D}_{0}^{p-1}\left(\frac{z(t)}{h(t,z(t))}\right)\Big|_{t=1} + \left(\frac{z(t)}{h(t,z(t))}\right)\Big|_{t=\eta} = 0 \end{cases}$$
(4)

where, $\mathcal{G}: [0,1] \times \mathbb{R} \to \mathcal{P}(\mathbb{R})$ is a multi-valued map via some properties.

MSC 2010: 26A33, 34A08, 34A12

Keywords: Caputo fractional derivative, hybrid fractional differential equation and inclusion, thermostat modeling

Rational kinematics

HANS-PETER SCHRÖCKER

University of Innsbruck, Innsbruck, Austria

email: hans-peter.schroecker@uibk.ac.at

A rigid body motion is called "rational" if all trajectories are rational curves [4]. Rational motions have been investigated since the second half of the 19th century but, nonetheless, some of their rather fundamental properties have been unveiled only in the past decade. In our talk we present an overview of these results, accessible for a general mathematical audience.

A central aspect is the parametrization of rational motion via certain polynomials over rings ("motion polynomials"). Factorization of motion polynomials [1, 3] corresponds to the decomposition of rational motions into sequences of rotations and has important applications in mechanism science. The trajectories degree is generically twice the motion polynomial degree but exceptional cases do exist. They are particularly interesting and allow geometric interpretation. Their study gives important insight into the structure of rational motions, where geometry and algebra are beautifully interwoven [2, 5].

MSC 2010: 70B10, 16Z05 15A66

Keywords: rational motion, motion polynomial, factorization, quaternion algebra, degree

Acknowledgement: Results presented in this talk have been obtained together with G. Hegedüs, Z. Li, D. F. Scharler, J. Schicho and J. Siegele. This research is supported by the Austrian Science Fund (FWF): P 31061 (The Algebra of Motions in 3-Space).

- G. Hegedüs, J. Schicho and H.-P. Schröcker, Factorization of Rational Curves in the Study Quadric and Revolute Linkages. *Mech. Mach. Theory* 69 (2013), no. 1, 142–152; doi: 10.1016/j.mechmachtheory.2013.05.010.
- [2] Z. Li, J. Schicho and H.-P. Schröcker, The Rational Motion of Minimal Dual Quaternion Degree with Prescribed Trajectory. *Comput. Aided Geom. Design* 41 (2016), 1–9; doi: 10.1016/j.cagd.2015.10.002.
- [3] Z. Li, D. F. Scharler and H.-P. Schröcker, Factorization Results for Left Polynomials in Some Associative Real Algebras: State of the Art, Applications, and Open Questions. J. Comput. Appl. Math. 349 (2019), 508–522; doi:10.1016/j.cam.2018.09.045.
- [4] O. Röschel, Rational motion design a survey. Comput. Aided Design 30 (1998), no. 3, 169–178; doi:10.1016/S0010-4485(97)00056-0.
- [5] J. Siegele, D. F. Scharler and H.-P. Schrcker, Rational Motions with Generic Trajectories of Low Degree. Submitted for publication (2019).

On the Hyers-Ulam stability of some classical operators

HAMDULLAH ŞEVLİ

Van Yüzüncü Yıl University, Van, Turkey

email: hsevli@yyu.edu.tr

In 1940, Stanisław Marcin Ulam gave a talk before a Mathematical Colloquium at the University of Wisconsin in which he discoursed a number of important unsolved problems. Among those was a question concerning the stability of homomorphisms [1]. In 1941, Hyers published an article and gave an answer to the problem of Ulam for additive functions defined on Banach spaces [2]. In the following years this problem grew in popularity and many authors published articles on the stability of functional equations. As a result of the problem posed by Ulam, and afterwards the response Hyers gave to this problem, this terminology, which was included in many studies, was named "Hyers-Ulam Stability". This terminology has been continued and used for differential equations and various integral equations as well as functional equations.

In this talk, we will focus on the Hyers-Ulam stability terminology and refer about the Hyers-Ulam stability of some classical operators from approximation theory that have attracted considerable attention recently.

MSC 2010: 39B82, 41A35, 41A44 Keywords: Hyers-Ulam stability, positive linear operators

- S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, Chapter VI, 1964.
- [2] D. H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [3] S.-M. Jung, S. Şevgin, and H. Şevli, On the perturbation of Volterra integro-differential equations. Applied Mathematics Letters 26 (2013), 665-669.
- [4] Soon-Mo Jung, H. Şevli, Power series method and approximate linear differential equations of second order. Adv. Difference Equ. 2013 (2013), no. 76, 9 pp.
- [5] H. Takagi, T. Miura, S. E. Takahasi, Essential norms and stability constants of weighted composition operators on C (X). Bulletin of the Korean Mathematical Society 40 (2003), no. 4, 583-591.
- [6] O. Hatori, K. Kobayashi, T. Miura, H. Takagi, S. E. Takahasi, On the best constant of Hyers-Ulam stability. J. Nonlinear Convex Anal. 5 (2004), 387-393.
- [7] D. Popa, I. Raşa, On the stability of some classical operators from approximation theory. Expositiones Mathematicae 31 (2013) no. 3, 205-214.
- [8] G. G. Zengin, Hyers-Ulam stability of some linear operators. Msc Thesis, Istanbul Commerce University, Istanbul, 2020.

A new approach to asymptotic integration of differential equations

AĞACIK ZAFER

American University of the Middle East, Egaila, Kuwait

email: agacik.zafer@aum.edu.kw

Asymptotic integration of differential equations is a classical research topic in applied mathematics. There is large body literature on the subject concerning a general class of second-order differential equations x'' = f(t, x). The problem is to find conditions on the function f(t, x) that guarantee the existence of solutions asymptotic to a + bt as $t \to \infty$ for any given real numbers a and b.

In this talk, we will give a literature review, and then provide a new approach that can be used to study such problems for a class of more general differential equations. Our technique is different than the traditional ones used in the literature; it is a constructive approach applicable to various types of differential equations as well as difference equations, delay differential equations, and impulsive differential equations.

MSC 2010: 34A34

Keywords: Asymptotic integration, second-order, nonlinear, principal solution, nonprincipal solution

Abstracts of participants' talks

Odd automorphisms of the Grassmann algebra

<u>NAZAN AKDOĞAN</u>

Istanbul Technical University, Istanbul, Turkey

email: nakdogan@itu.edu.tr

Consider the automorphism group $\operatorname{Aut}(G)$ of the Grassmann algebra G with a countable generating set X. In this work, we determine odd automorphisms sending each generator to elements expressed as a linear combinations of monomials of odd length. These automorphisms are of importance in describing the group $\operatorname{Aut}(G)$.

MSC 2010: 15A75, 14J50, 20F22 Keywords: Grassmann algebra, automorphism, subgroup

- F. A. Berezin, Automorphisms of a Grassmann algebra. Mat. Zametki 1 (1967), no. 3, 269-276; doi:10.1007/BF01098879.
- [2] N. Bourbaki, Algebra 1. Springer-Verlag, Berlin, 1989.
- [3] D.Ž. Djoković, Derivations and automorphisms of exterior algebras. Can. J. Math. 30 (1978), no. 6, 1336-1344; doi:10.4153/CJM-1978-111-5.

Geodetic number of circulant graphs $C_n(\{1,3\})$

MANAL AL-LABADI

University Of Petra, Jordan, Amman

email: manal.allabadi@uop.edu.jo

The geodetic number of a graph is an important graph invariant. Geodetic number has many applications in Computer Networks, Social Networks. Let $1 \leq a_1 < a_2 < \cdots < a_m \leq \lfloor \frac{n}{2} \rfloor$, where m, n, a_i are integers, $1 \leq i \leq m$, and $n \geq 3$. Set $S = \{a_1, a_2, \cdots, a_m\}$. A graph G with the vertex set $\{1, 2, \cdots, n\}$ and the edge set $\{\{i, j\} : |ij| \equiv a_t (modn) \text{ for some } 1 \leq t \leq m\}$ is called a circulant graph with respect to set S (or with connection set S), and denotes by $C_n(S)$ or $C_n(a_1, a_2, \cdots, a_m)$. In this paper, we compute the geodetic set and geodetic number of circulant graphs $C_n(\{1, 3\})$.

MSC 2010: 05c99, 05cxx, 05Exx Keywords: geodetic set; geodetic number; circulant graph

- [1] F. Buckley, F. HararyG, Distance in graphs. Addison-Wesely, Redwood City, CA, 1990.
- [2] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph. Networks. 39 (2002), no. 1, 1-6.
- [3] O.A AbuGhneim, B. Al-Khamaiseh and H. Al-Ezeh, The geodetic, hull, and Steiner numbers of powers of paths. In: Util. Math, (2014), 289-294.

On Toeplitz operators with Poly-quasihomogenous symbol

RAJA'A AL-NAIMI¹, ABDELRAHMAN YOUSEF²

^{1,2} University Of Petra, Amman, Jordan

emails: ¹rajaa.alnaimi@uop.edu.jo; ²abd.yousef@ju.edu.jo.

In this paper, we give some basic results concerning Toeplitz operators whose symbol is of the form $f(\theta)\phi$, where ϕ is a radial function and $f(\theta)$ is a polynomial in $e^{i\theta}$, then use these results to characterize all Toeplitz operators which commute with them on the Bergman space.

Keywords: Toeplitz Operators, Bergman space, commuting problem, poly-quasihomogenous function

- [1] H. Hedenmalm, B. Korenblum, B. and K. Zhu, Theory of Bergman space. Graduate Text in Mathematics. *Springer-Verlag. New York*, 2000.
- [2] I. Louhichi and L. Zakariasy, On Toeplitz operators with quasihomogenous symbols. Arch. Math. 8 (2005), 248–257.
- [3] A. Yousef and R.Al-Naimi, On Toeplitz Operators with Biharmonic Symbols. Bull. Malays .Math .Sci .Soc. 42 (2019), no 2, 1-13; doi:10.1007/s40840-019-00763-3.

Ev-degree and ve-degree molecular topological properties of silicon carbide structures

MEHMET ŞERİF ALDEMİR¹, MURAT CANCAN², <u>SÜLEYMAN EDİZ</u>³

^{1,2,3} Van Yüzüncü Yıl University, Van, Turkey

emails: ¹msaldemir@yyu.edu.tr; ²mcancan@yyu.edu.tr; ³suleymanediz@yyu.edu.tr

Topological indices enable information about the underlying topology of chemical and physical substances. Topological indices are grouped into two categories; degree based and distance based. Degree based topological indices are defined by using classical degree concept in graph theory. Evdegree and ve-degree which have been defined recently are two novel degree concepts in graph theory. Also Ev-degree and ve-degree based topological indices. Molecular classical degree based topological properties of silicon carbon structures have been investigated recently. In this study we investigate ev-degree and ve-degree molecular topological properties of two silicon carbon structures of $Si_2C_3 - I$ and $Si_2C_3 - II$.

MSC 2010: 05C07, 05C90 Keywords: Ev-degree topological indices, Ve-degree topological indices, Silicon carbide structures

Numerical simulation of two-dimensional sine-Gordon equation using the dual reciprocity boundary element method

NAGEHAN ALSOY-AKGÜN

Van Yüzüncü Yıl University, Van, Turkey

email: nagehanalsoyakgun@yyu.edu.tr;

In this study two-dimensional sine-Gordon (SG) equation is solved by using the dual reciprocity boundary element method (DRBEM). At the beginning of the solution procedure, central difference approximations were used for both first and second order time derivatives. After inserting the finite difference approximations into the equation, the form of the modified Helmholtz equation was obtained. The fundamental solution of modified Helmholtz equation is employed in the integral equation formulation [1]. The inhomogeneous terms of the equation causes a domain integral in the boundary integral equation [2]. The DRBEM provides to transform the domain integral into the boundary integral by approximating with thin plate spline the inhomogeneous term of the equation $(r^2 \ln r)$. Numerical results are presented for several cases and they are observed to be in good agreement with other numerical results available in the literature [3].

MSC 2010: 65M38, 65N38, 35J05 Keywords: DRBEM, sine-GORDON, modified Helmholtz

- [1] N. Alsoy-Akgün, The dual reciprocity boundary element solution of Helmholtz-type equations in fluid dynamics. *Ph.D. Thesis, METU*, 2013.
- [2] P. W. Partridge, C. A. Brebbia and L. C. Wrobel, The Dual Reciprocity Boundary Element Method. Computational Mechanics Publications, Southampton Boston, 1992.
- [3] M. Dehghan and D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for twodimensional sine- Gordon equation. *Comput. Methods Appl. Mech. Engrg.* 197 (2008), 476-486; doi:10.1016/j.cma.2007.08.016.

V_3 helices in the 5-dimensional Euclidean space

HASAN ALTINBAŞ¹, BÜLENT ALTUNKAYA², LEVENT KULA³

^{1,2,3} Kırşehir Ahi Evran University, Kırşehir, TURKEY

emails: ¹hasan.altinbas@ahievran.edu.tr; ²bulent.altunkaya@ahievran.edu.tr; ³lkula@ahievran.edu.tr

In this paper, we give a definition of 3-type harmonic curvature functions of a regular curve. Henceforth, by using this, we obtain a characterization of V_3 helices in the 5-dimensional Euclidean space \mathbb{E}^5 . Finally, we have an example of V_3 helix in \mathbb{E}^5 .

MSC 2010: 53A04 Keywords: Harmonic curvatures, helix, Euclidean space

- B. Altunkaya and L. Kula, On polynomial helices in n-dimensional Euclidean space Rⁿ. Advances in Applied Clifford Algebras 28 (2018), no. 4; doi:10.1007/s00006-018-0835-1.
- [2] B. O'Neil, Semi-Riemannian Geometry. Academic Press, New-York, 1983.
- [3] T. A. Ahmad and M. Turgut, Some Characterizaton of Slant Helices in the Euclidean Space Eⁿ. Hacettepe Journal of Math. and Stat. 39 (2010), no. 3, 327–336.
- [4] E. Ozdamar and H. H. Hacisalihoglu, A characterization of inclined curves in Euclidean n-space. Comm. Fac. Sci. Univ. Ankara, Ser A1 24 (1975), 15–23.
- [5] I. Gok, C. Camci and H. H. Hacisalihoglu, V_n slant helices in Euclidean *n*-space E^n . Math. Commun. 14 (2009), no.2, 317–329; doi:
- [6] M. do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.
- [7] H. H. Hacisalihoglu, Diferensiyel Geometri 1, 3. Edition, 1998.

Generalized spline and its algebraic structure

<u>SELMA ALTINOK¹</u>, SAMET SARIOĞLAN²

^{1,2}Hacettepe University, Ankara, Turkey

emails: ¹sbhupal@hacettepe.edu.tr; ²ssarioglan@hacettepe.edu.tr

Given a graph G whose edges are labeled by ideals of a commutative ring R with identity, a generalized spline is a vertex labeling by elements of R so that two adjacent vertices differ by an element of the ideal associated to the edge. The set of generalized splines form a subring of a product of R-copies and a module over R. Such a module it is called a generalized spline module. We focus on problems of the freeness, finding bases and bases criteria for generalized spline modules. We try to give an answer by using combinatorial and linear algebra techniques.

MSC 2010: 05C78, 11A07, 05C40, 13D40 Keywords: Generalized splines, algebraic graph theory, modules

- [1] S. Altınok, S. Sarıoğlan, Flow-up Bases for Generalized Spline Modules on Arbitrary Graphs. arXiv:1902.03756, 2019.
- [2] S. Altınok, S. Sarıoğlan, Basis Criteria for Generalized Spline Modules via Determinant. arXiv:1903.08968, 2019.
- [3] S. Gilbert, S. Polster, J. Tymoczko, Generalized splines on arbitrary graphs. Pacific Journal of Mathematics 281 (2016), no. 2, 333-364.
- [4] E. Gjoni, Basis Criteria for n-cycle Integer Splines. Bard College Senior Projects Spring, 2015.
- [5] M. Handschy, J. Melnick, S. Reinders, Integer generalized splines on cycles. arXiv:1409.1481, 2014.
- [6] E. R. Mahdavi, Integer Generalized Splines on the Diamond Graph. Senior Projects Spring, 2016.
- [7] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul complex, and the localization theorem. *Invent. Math.* 131 (1998), no. 1, 25–83.

The numerical solutions of the time-fractional partial differential equations by natural transform decomposition method

HALİL ANAÇ

Gumushane University, Gumushane, Turkey

email: halilanac@gumushane.edu.tr

The natural transform decomposition method is applied to obtain the approximate solutions of the time-fractional partial differential equations with Caputo derivative. The fractional derivatives are defined in the Caputo sense. Numerical experiments are analyzed by NTDM. The graphs of the solutions of the some nonlinear time-fractional partial differential equations are plotted in the MAPLE software. The applications shows that NTDM is very effective method.

MSC 2010: 35F20, 35R11, 65R99

Keywords: Time-fractional partial differential equation, natural transform decomposition method, Mittag-Leffler function

- [1] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.
- [2] M. S. Rawashdeh and S. Maitama, Solving nonlinear ordinary differential equations using the NDM. J. Appl. Anal. Comput. 5 (2015), no. 1, 77-88.
- [3] F. B. M. Belgacem and R. Silambarasan, Theory of natural transform. In: Mathematics in Engineering, Science and Aerospace3 (2012), no. 1, 99-124.

Condition number of a condition number for the structured matrices

BAHAR ARSLAN

Bursa Technical University, Turkey

email: bahar.arslan@btu.edu.tr

We can define a matrix function $f : \mathbb{K}^{n \times n} \to \mathbb{K}^{n \times n}$, $(\mathbb{K} = \mathbb{C}, \mathbb{R})$ as a mapping from a set of $n \times n$ matrices to a set of $n \times n$ matrices. It is crucial to understand the sensitivity of matrix functions to perturbations, which is measured by condition numbers (we call level-1 condition number). However condition numbers might not be computed exactly due to the errors in inputs. In this situation the problem of measuring the sensitivity of condition numbers emerges. The concept of the condition number, named level-2 condition number, was first investigated by Demmel [1]. Higham evaluated the level-2 condition number for the matrix inverse and for the solution of linear systems for symmetric matrices [2]. For unstructured matrices, the relation between the level-2 condition number and the higher order Fréchet derivatives is given in [3].

The aim of this work is to investigate the structured level-2 condition number by following the similar steps for the structured level-1 condition number using differentials between smooth manifolds and enforcing the structure on the perturbation matrices [4]. We examine the effect of restricting the perturbation matrix to an automorphism group. This work also shows the necessity of structure preserving algorithms for the computation of matrix functions by comparing the unstructured level-2 condition number with the structured one for some specific matrix functions such as matrix square root, matrix exponential and matrix logarithm.

MSC 2010: 34B05, 34A08

Keywords: matrix function, Fréchet derivative, Kronecker form, level-2 condition number, matrix exponential, matrix logarithm, matrix square root, automorphism group

- J. W. Demmel, On condition numbers and the distance to the nearest ill-posed problem. Numerische Mathematik 51 (1987) no. 3, 251-289; 10.1007/BF01400115.
- [2] Desmond J. Higham, Condition numbers and their condition numbers. Linear Algebra and its Applications 214 (1995), 193-213; 10.1016/0024-3795(93)00066-9.
- [3] Nicholas J. Higham and Samuel D. Relton, Higher order Fréchet derivatives of matrix functions and the level-2 condition number. SIAM J. Matrix Anal. Appl. 35 (2014) no. 3, 1019-1037; 10.1137/130945259.
- [4] B. Arslan, V. Noferini and F. Tisseur, The Structured Condition number of a differentiable map between matrix manifolds, with applications. SIAM J. Matrix Anal. Appl. 40 (2019) no. 3, 774-799; 10.1137/17M1148943.

N-dimensional φ -variation of nonlinear discrete operators

İSMAİL ASLAN

Hacettepe University, Ankara, Turkey

email: ismail-aslan@hacettepe.edu.tr

In this work, we study the Tonelli sense N-dimensional φ -variation (see [1, 6, 7]) of the discrete operators studied in [2, 3]. First of all, we construct a nonlinear form of these operators. Then using Tonelli sense variation, we investigate the approximation properties of N-dimensional setting of the operators under φ -variational functional. Moreover, we apply summability method (see [4, 5]) in order to improve these type of operators to a general case. We also study the rate of convergence. Finally, using the relation between discrete operators and generalized sampling series, we also have convergence results in φ -variation for the generalized sampling series.

MSC 2010: 26A45, 40A25, 41A25 **Keywords:** φ -variation, Nonlinear operators, Discrete operators

- [1] L. Angeloni, G. Vinti, Convergence and rate of approximation for linear integral operators in BV^{φ} -spaces in multidimensional setting. J. Math. Anal. Appl **349** (2009), 317-334.
- [2] L. Angeloni, G. Vinti, Discrete operators of sapmling type and approximation in φ-variation. Math. Nachr. 291 (2018), no. 4, 546-555.
- [3] I. Aslan, Approximation by Sampling type Discrete Operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 (2020), no. 1, 969-980.
- [4] H.T. Bell, A-summability. Dissertation, (Lehigh University, Bethlehem, Pa.), 1971.
- [5] H.T. Bell, Order summability and almost convergence. Proc. Amer. Math. Soc. 38 (1973), 548552.
- [6] J. Musielak, W. Orlicz, On generalized variations (I). Studia Math. 18 (1959), 11-41.
- [7] L. Tonelli, Su alcuni concetti dell'analisi moderna, Ann. Scuola Norm. Super. Pisa 11 (1942), no. 2, 107–118.

On generalizations of r-ideals of commutative rings

EMEL ASLANKARAYIGIT UGURLU

Marmara University, Istanbul, Turkey

email: emel.aslankarayigit@marmara.edu.tr

In this study, we present generalizations of the concept of r-ideals in commutative rings with nonzero identity. Let R be a commutative ring with $0 \neq 1$ and L(R) be the lattice of all ideals of R. In 2008, the authors introduced generalizations of prime ideals by defining the concept of ϕ -prime ideals, where $\phi : L(R) \to L(R) \cup \{\emptyset\}$ is a function, see [1]. On the other hand, in 2015, R. Mohamadian presented the notion of r-ideals in commutative rings with nonzero identity as followings: an ideal I of a commutative ring with identity R is called r-ideal (resp., pr-ideal), if whenever $ab \in I$ and ais regular element imply that $b \in I$ (resp., $b^n \in I$, for some natural number n), for each $a, b \in R$, see [3]. By the help of with these definitions, we introduce a concept of ϕ -r-ideals as followings: a proper ideal I of R is called a ϕ -r-ideal of R if whenever $ab \in I$ and Ann(a) = (0) imply that $b \in I$ for each $a, b \in R$. In addition to giving many properties of ϕ -r-ideals, we also examine the concept of ϕ -r-ideals in trivial ring extension, see [2] and use them to characterize total quotient rings.

MSC 2010: 13A15, 13A18 Keywords: r-ideals, ϕ -prime ideals, ϕ -r-ideals

- D. D. Anderson, M. Batanieh, Generalizations of prime ideals. Comm. Algebra 36 (2008), 686-696.
- [2] D. D. Anderson, M. Winders, Idealization of a module. Journal of Commutative Algebra 1 (2009), no. 1, 3-56.
- [3] R. Mohamadian, r-ideals in commutataive rings. Turkish J. Math. 39 (2015), 733-749.

A new paradigm on the stability of second order dynamical systems

MUZAFFER ATEŞ

Van Yuzuncu Yil University, Van, Turkey

emails: ates.muzaffer65@gmail.com, mates@yyu.edu.tr

In this paper we are dealing with the physical implications of second order ordinary differential equations. In this connection we are deducing an obvious distinction between the qualitative behaviors of conservative and dissipative systems in the sense of Liapunov. With these intuitions some well-known published papers may need improvements.

The statistical convergence in Riesz spaces

ABDULLAH AYDIN

Muş Alparslan University, Muş, Turkey

email: a.aydin@alparslan.edu.tr

The statistical unbounded topological convergence was studied and investigated with respect to the solid topology in locally solid Riesz spaces (see, [1, 2]). Also, the statistical convergence on Riesz spaces was studied (see[3, 4]). In this paper, we introduce the statistical unbounded order convergence in Riesz spaces by developing topology-free techniques with the unbounded order convergence on Riesz spaces. Moreover, we give some relations with other kinds of convergences.

MSC 2010: 46A40, 10A05, 46B42 Keywords: Statistical *uo*-convergence, order convergence, order statical convergence, Riesz spaces

- [1] A. Aydın, The statistically unbounded τ -convergence on locally solid Riesz spaces. Turk. J. Math. 44 (2020), 949–956.
- [2] A. Aydın and M. Et, Statistically multiplicative convergence on locally solid Riesz algebras. arXiv:2004.11454.
- [3] Z. Ercan, A characterization of *u*-uniformly completeness of Riesz spaces in terms of statistical *u*-uniformly pre-completeness. *Demon. Math.* **42** (2009), 383–387.
- [4] C. encimen and S. Pehlivan, Statistical order convergence in Riesz spaces. Math. Slov. 62 (2012), 557–570.

An efficient numerical method for solving nonlinear singular boundary value problems arising in various physical models

SONER AYDINLIK¹, AHMET KİRİS²

^{1,2} Istanbul Technical University, Istanbul, Turkey

emails: ¹aydinliks@itu.edu.tr; ²kiris@itu.edu.tr

Due to singularity, it is not possible to obtain analytical solution for singular boundary value problem in general; moreover, classical numerical methods are not applicable. Therefore, various non-classical numerical methods proposed to solve this kind of problems. In this study, a useful technique, Chebyshev Finite Difference Method (CFDM) is introduced for solving nonlinear singular boundary value problems, since the present method is more advantageous for the solution of singular boundary problems than the other methods given in the literature. CFDM is widely used in the literature for the solution of second-order initial or boundary value problems [1-4]. Convergence and error analysis of the method are investigated. To show the applicability and efficiency of the presented method, the numerical solutions of four nonlinear singular boundary value problems which appear in applied science and engineering are given. Three of these examples arise in the study of thermal explosion (Example 1), steady-state oxygen diffusion in a spherical cell (Example 2) and the equilibrium of isothermal gas spheres (Example 3). The numerical results show that CFDM is rather efficient and accurate than the many methods given in the literature, without dividing the domain into the sub intervals. Besides, the proposed method does not need any modification for different boundary conditions.

MSC 2010: 34B16, 65L10, 65L12

Keywords: Chebyshev finite difference method, numerical solution, nonlinear singular boundary value problem

- [1] E. M. E.Elbarbary, M. El-Kady, Chebyshev finite difference approximation for the boundary value problems. *Appl. Math. Comput.* **139** (2003), no. 2-3, 513-523.
- [2] A. Saadatmandi, J. A. Farsangi, Chebyshev finite difference method for a nonlinear system of second-order boundary value problems. Appl. Math. Comput. 192 (2007), no. 2, 586-591.
- [3] A. Saadatmandi, M. Dehghan, The numerical solution of problems in calculus of variation using Chebyshev finite difference method. *Phys. Lett. A* 372 (2008), no. 22, 4037-4040.
- [4] S. Aydinlik, A. Kiris, A high-order numerical method for solving nonlinear Lane-Emden type equations arising in astrophysics. Astrophys. Space Sci. 363 (2018), no. 264; doi:10.1007/s10509-018-3483-y.

Generalized Einstein tensor for an almost pseudo-Ricci symmetric manifold

<u>HÜLYA BAĞDATLI YILMAZ</u>¹, S. AYNUR UYSAL²

¹ Marmara University, Istanbul, Turkey
 ² Doğuş University, Istanbul, Turkey

emails: ¹hbagdatli@marmara.edu.tr; ²auysal@dogus.edu.tr

The object of the paper is to study the generalized Einstein tensor G(X, Y) on almost pseudo-Ricci symmetric manifolds, $A(PRS)_n$. It is examined some cases of the generalized Einstein tensor on an $A(PRS)_n$ manifold and proved some related theorems. For instance, in an $A(PRS)_n$ manifold with non-zero scalar curvature, if the generalized Einstein tensor G(X, Y) equals zero, then two associated 1-forms are linearly dependent.

MSC 2010: 53B20, 53C15, 53C25

Keywords: Almost pseudo-Ricci symmetric manifold, Generalized Einstein tensor, Torqued vector field, Conservative, Cyclic paralel, Codazzi tensor

- M. C. Chaki, On pseudo symmetric manifolds. Analele Şt Ale. Univ. Al. I. Cuza Din Iaşi. 33 (1987), 53-58.
- [2] M. C. Chaki, On pseudo Ricci symmetric manifolds. Bulgar. J. Phys. 15 (1988), 526-531.
- [3] M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds. *Tensor N.S.* 68 (2007), 10-14.
- [4] Bang-Yen Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields. *Kragujevac Journal of Mathematics* 41 (2017), no. 1, 93–103.
- [5] Bang-Yen Chen, Classification of torqued vector fields and its applications to Ricci solutions. *Kragujevac Journal of Mathematics* 41 (2017), no. 2, 239–250.
- [6] A. Gray, Einstein-like manifolds which are not Einstein. b Geom. Dedicata 7 (1998), 259-280.
- [7] A. Z. Petrov, New methods in the general theory of relativity. Izdat. "Nauka", Moscow, 1966.

Goodman and Kruskal's gamma coefficient for ordinalized bivariate distributions

ALESSANDRO BARBIERO¹, ASMERILDA HITAJ²

¹ Università degli Studi di Milano, Milan, Italy ² Università degli Studi di Milano-Bicocca, Milan, Italy

emails: ¹alessandro.barbiero@unimi.it; ²asmerilda.hitaj1@unimib.it

We consider a bivariate normal distribution with linear correlation ρ whose random components are discretized according to two assigned finite sets of thresholds. On the final bivariate ordinal random variable, one can compute Goodman and Kruskal's gamma coefficient γ , which is a common measure of ordinal association [1]. Given the known analytical monotonic relationship between Pearson's ρ and Kendall's rank correlation τ [2] for the bivariate normal distribution,

$$\tau = \frac{2}{\pi} \arcsin \rho,\tag{1}$$

and since Kendall's τ coincides with Goodman and Kruskal's γ for a bivariate continuous variable, the change of this association measure before and after discretization is worth being studied. We consider several experimental settings obtained by varying the two sets of thresholds, or, equivalently, the marginal distributions of the final ordinal variables; in particular, we examine the case of uniform, symmetrical unimodal or bimodal, and asymmetrical distributions, with different number of categories. This study, confirming previous findings, shows that the gamma coefficient is in absolute value always larger than Kendall's τ ; this discrepancy shrinks when the number of categories increases or, holding the same number of categories fixed, by using uniform distributions. Based on these results, a proposal is suggested to build a bivariate ordinal variable with assigned margins and association (expressed in terms of Goodman and Kruskal's γ), by ordinalizing a bivariate normal distribution. Hints and advice are provided when discretization is carried out on other bivariate continuous distributions.

MSC 2010: 62H05, 62H20, 62E15

Keywords: bivariate normal distribution, contingency table, copula, discretization, latent variable, ordinal association

- L. A. Goodman, W. H. Kruskal, Measures of association for cross classifications. J. Amer. Statist. Assoc. 49 (1959), no. 302, 732–764.
- [2] M. G. Kendall, The treatment of ties in rank problems. *Biometrika* 33 (1945), 239–251.

Markov matrices on the set of polytopes

ŞENAY BAYDAŞ¹, BÜLENT KARAKAŞ²

^{1,2} Van Yüzüncü Yıl University

emails: ¹senay.baydas@gmail.com; ²bulentkarakas@gmail.com

This paper presents the set of Markov matrices is drawable. For the proof, we use the one-toone corresponding among nxn Markov matrices, the solution of linear equation system from derived Markov property and the set of (n-1)-polytopes.

MSC 2010: 60J99, 52B70 Keywords: Convex polytope, geometry, manifold, Markov matrices

- [1] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. AMS, Providence, 2001.
- [2] W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, California, 1975.
- [3] J. G. Sumner, J. Fernandez-Sanchez and P. D. Jarvis, Lie Markov models. J. Theoret. Biol. 298 (2012), 16-31.
- [4] N. Pullman, The geometry of finite Markov chains. Canad. Math. Bull. 8 (1965), no. 3, 345-358.

Ulam type stability for higher order functional differential equation

EMEL BİÇER¹, CEMİL TUNÇ²

¹ Bingol University, Bingol, Turkey
² Van Yuzuncu Yıl University, Van, Turkey

emails: ¹ebicer@bingol.edu.tr; ²cemtunc@yahoo.com

In this study, the Hyers-Ulam stability of some classes of functional differential equations was investigated by direct method and open mapping theorem. We think that the results in this paper will contribute to the related literature.

MSC 2010: 34K20, 34K30, 34D04

Keywords: Hyers-Ulam stability, higher order, open mapping theorem

- A. Zada, W. Ali and C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gronwall-Bellman-Bihari's type. *Applied Mathematics and Computation* 350 (2019), 60-65.
- [2] C. Tunç, E. Bicer, Hyers-Ulam-Rassias stability for a first order functional differential equation. J. Math. Fundam. Sci., 47 (2015), 143–153.

A new numerical approach for solving nonlinear Volterra integro differential equation

MUSA CAKIR¹, HAKKI DURU², <u>BARANSEL GUNES³</u>

^{1,2,3}Van Yuzuncu Yil University, Van, TURKEY

emails: ¹cakirmusa@hotmail.com; ²hakkiduru@gmail.com; ³baransel_gunes_91@hotmail.com

In this article, we study quasilinear Volterra integro-differential equations (VIDEs). Asymptotic estimates are made for the solution of VIDE. Finite difference scheme which is accomplished by the method of integral identities with using of interpolating quadrature rules with weight functions and remainder term in integral form are presented for the VIDE. Error estimates are carried out according to the discrete maximum norm. The theoretical results are tested on numerical examples.

MSC 2010: 45J05, 65R20, 65N06

Keywords: Error estimate, finite difference method, Volterra-integro differential equation

- [1] G. M. Amiraliyev, S. Sevgin, Uniform difference method for singularly perturbed Volterra-integro differential equations. *Applied Mathematics and Computation* **179** (2006), 731-741.
- [2] E. Cimen, A computational method for Volterra-integro differential equations. *Journal of Science and Technology* **11** (2018), 347-352.
- [3] A. M. Wazwaz, The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equation. *Linear and Nonlinear Integral Equations*, Springer, Berlin (2010), 1304–1309.

Using the curve fitting method to estimate the peak value of the COVID-19 pandemic with applications

<u>ENGİN CAN</u>

Sakarya University of Applied Sciences, Sakarya, Turkey

email: ecan@subu.edu.tr

Mathematical modeling plays a major role in assessing, controlling, and forecasting potential outbreaks. In this study, the curve fitting method is taken into consideration. We give the method of the least squares as a standard approach in regression analysis that estimates the attainable maximum (peak value) of the Coronavirus infection that started in Wuhan, China, and spread to the world in a short time period. Finally, we demonstrated its applications for three countries and presented results clearly that earns further detailed disquisition.

MSC 2010: 65C20, 65D10, 62J05 Keywords: Mathematical model, COVID-19, coronavirus, curve fitting, the least squares method

- [1] E. S. Türker and E. Can, Bilgisayar Uygulamalı Sayısal Analiz Yöntemleri. *Değişim Yayınları Sakarya*, 2007.
- [2] World Health Organization. http://www.euro.who.int/en
- [3] Turkish Ministry of Health. https://covid19bilgi.saglik.gov.tr/tr/

Numerical solution of the integro-differential equation containing boundary layer

ERKAN CIMEN

Van Yuzuncu Yil University, Van, Turkey

email: cimenerkan@hotmail.com

In this paper, we examine the singularly perturbed convection diffusion problem for a class of Fredholm integro-differential equation. We construct a fitted difference scheme on a piecewise uniform mesh and analyze the error estimates. We prove that the method is almost first-order convergent with respect to the perturbation parameter in the discrete maximum norm. Moreover, we present the numerical experiments which support the theoretical results.

MSC 2010: 65L10, 65L11, 65L12, 65L20, 65R20

Keywords: Fredholm integro-differential equation, boundary layer, finite difference method, uniform convergence

- [1] P. A. Farell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers. *Chapman Hall/CRC, New York*, 2000.
- [2] E. Cimen, Numerical solution of a boundary value problem including both delay and boundary layer. *Math. Model. Anal.* **23** (2018), 568–581.
- [3] G. M. Amiraliyev, M. E. Durmaz and M. Kudu, Uniform convergence results for singularly perturbed Fredholm integro-differential equation. J. Math. Anal. 9 (2018), 55–64.

A mathematical *SVEIR* model considered the effect of different vaccination rate to subcompartments of susceptibles

ÜMİT ÇAKAN¹, ERKAN LAZ²

¹ İnönü University, Malatya, Turkey
 ² Ministry of Education, Diyarbakır, Turkey

emails: ¹umit.cakan@inonu.edu.tr; ²erkanco1905@gmail.com

In this paper we introduce a vaccination model as mathematically in a population in which spread of a disease. This is a SVEIR model but it has some different aspects to the class S. We assume that the susceptible individuals consist of two separate subgroups: susceptible individuals with high risk and other susceptible individuals. Also these subgroups are vaccinated at different rates. This model considering the incubation period too, consists of a delay differential equation system.

We firstly present the equilibrium points and the reproduction number \mathcal{R}_0 which is a vital threshold in spread of diseases. Then we give some results about the local and global stabilities of the equilibrium points according that \mathcal{R}_0 is greater than one or not. To do these we use Lyapunov function and LaSalle Invariance Principle [1]. Finally we present an example to show the effect of vaccination rate of high risk group to spread of the disease.

MSC 2020: 34D05, 34D08, 34D20, 92B05, 92D25, 92D30

Keywords: Stability analysis, Lyapunov function, mathematical epidemiology, basic reproduction number, vaccination effect

Acknowledgement: This work was supported by Research Fund of the İnönü University. Project Number: FYL-2020-2077.

- J. P. LaSalle, Stability of non autonomous systems. Nonlin. Anal., Theory, Methods and Applications 1 (1976), no. 1, 83-91.
- [2] W. O. Kermack, A. G. Mckendrick, A contributions to the mathematical theory of epidemics, *Proc. Roy. Soc. A* 115 (1927), 700-721.
- [3] S. Lakshmikantham, S. Leela, A. A. Martynyuk, Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc., New York., 1989.
- [4] N. F. Tehrani, M. R. Razvan, S. Yasaman, Global analysis of a delay SVEIR epidemiological model. *Iran. J. Sci. Technol. A* 37A4 (2013), 483-489.
- [5] Y. Enatsu, E. Messina, Y. Nakata, Y. Muroya, E. Russo, A. Vecchio, Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates. *Appl. Math. Comput.* **39** (2012), 15-34.
- [6] C. C. McCluskey, Complete global stability for an SIR epidemic model with delay Distributed or discrete. Nonlin. Anal.: Real World Applications 11 (2010), 55-59.
- [7] A. Dénes, A.B. Gumel, Modeling the impact of quarantine during an outbreak of Ebola virus disease. *Infec. Dis. Model.* 4 (2019), 12-27.

A new interpretation of horizontal lifts on cotangent bundles

RABİA ÇAKAN AKPINAR

Kafkas University, Kars, Turkey

email: rabiacakan@kafkas.edu.tr

Using the horizontal lift on tangent bundles, the horizontal lifts on cotangent bundles of some tensor fields are constructed with the aid of a musical isomorphism. Describing the gh-lift of tensor fields on cotangent bundle, a new interpretation of the horizontal lifts on cotangent bundles is obtained.

MSC 2010: 53A45, 55R10 Keywords: Horizontal lift, tensor fields, musical isomorphism, cotangent bundle, tangent bundle

- F. Bertrand, Almost complex structures on the cotangent bundle. Complex Var. Elliptic Equ. 52 (2005), 741-754.
- [2] R. Cakan, K. Akbulut and A. A. Salimov, Musical isomorphisms and problems of lifts. *Chin. Ann. Math. Ser. B* 37 (2016), 323-330.
- [3] V. Cruceanu, On certain lifts in the tangent bundles. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. 46 (2000), 57-72.
- [4] A. A. Salimov, On operators associated with tensor fields. J. Geom. 99 (2010), 107-145.
- [5] K. Yano, E. M. Patterson, Horizontal lifts from a manifold to its cotangent bundle. J. Math. Soc. Japan 19 (1967), 185-198.
- [6] K. Yano, S. Ishihara, Tangent and cotangent bundles. Marcel Dekker, New York, 1973.

Some new inequalities for n-polynomial convex functions and applications

MUSA ÇAKMAK

Hatay Mustafa Kemal University, Hatay, Turkey

emails: enkucukcakmak@gmail.com

In this paper, the author established a new identity for differentiable functions, afterwards he obtained some new inequalities for functions whose first derivatives in absolute value at certain powers are convex and n-polynomial convex. Also he given some applications for special means for arbitrary positive numbers.

MSC 2010: 26A15, 26D07, 26D08

Keywords: Convex function, Hadamard-like inequality, n-polynomial convex functions, improved power-mean inequality

- H. Alzer, A superadditive property of Hadamard's gamma function. Abh. Math. Semin. Univ. Hambg. 79 (2009), 11-23.
- [2] S. S. Dragomir, J. Pečarić and L.E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), 335-241.
- [3] S. S. Dragomir, R. P. Agarwal, and P. Cerone, On Simpson's inequality and applications. J. Inequal. Appl. 5 (2000), no. 6, 533-579; doi:10.1155/S102558340000031X.
- [4] D. S. Mitrinović, J. Pečarić, and A.M. Fink, Classical and new inequalities in analysis. *Kluwer Academic, Dordrecht*, 1993.
- [5] T.Toplu, M. Kadakal, İ. İşcan, On n- polynomial convexity and some related inequalities. AIMS Mathematics 5 (2020), no. 2, 1304-1318; doi:10.3934/math.2020089.
- [6] M. Bessenyei, Hermite-Hadamard-type inequalities for generalized convex functions. J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article 63, pp. 51.
- [7] M. Bessenyei, The Hermite-Hadamard inequality in Beckenbach's setting. J. Math. Anal. Appl. 364 (2010), no. 2, 366-383.
- [8] B. G. Pachpatte, Mathematical Inequalities, North-Holland Mathematical Library, Elsevier Science B.V. Amsterdam, 2005.
- [9] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications. Academic Press, 1991.
- [10] M. Çakmak, M. Tunç, A. Acem, Some new inequalities for differentiable h-convex functions and applications. *Miskolc Math. Note.* Accepted.

Some results on a second order conformable dynamic operator on time scales

FATMA AYÇA ÇETİNKAYA

Mersin University, Mersin, Turkey

email: faycacetinkaya@mersin.edu.tr

In this paper, we deal with a conformable dynamic operator of second order on an arbitrary time scale. We define an initial value problem consisting of a dynamic equation which is generated by the above-mentioned dynamic operator and initial conditions. We prove an existence and uniqueness theorem for the solutions of the initial value problem and we suggest a method to construct the solutions. Then, we prove the conformable Lagrange identity. After that, we derive a conformable boundary value problem which consists of a conformable dynamic operator of second order and boundary conditions. We prove Green's theorem with the help of the conformable Lagrange identity and we provide a characterization for the eigenvalues of the conformable boundary value problem. Presented results of this paper are generalizations of some results in [1] via conformable derivative.

MSC 2010: 34N05, 26A33, 34K08

Keywords: Time scales, conformable derivative, boundary value problems

- [1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications. Birkhäuser, Boston Inc. Boston, MA, 2001.
- [2] N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales. *Journal of King Saud University-Science* 28 (2016), no. 1, 93-98; doi:10.1016/j.jksus.2015.05.003.

Similarity detection of algebraic plane curves using invariants

HÜSNÜ ANIL ÇOBAN

Karadeniz Technical University, Trabzon, Turkey

email: hacoban@ktu.edu.tr

A new algorithm is presented to detect whether two given rational algebraic plane curves are similar, by using differential invariants. At the same time, all such similarities, and all symmetries which are the particular case of equal curves are found. A complete theoretical explanation of all stages of the method is given. Also, the method has been implemented and tested in the MAPLE system for some curves.

MSC 2010: 53A55, 68W30, 14Q05 Keywords: Differential invariants, plane algebraic curves, similarity detection

Several relations on certain Hardy sums and two-term exponential sum

MUHAMMET CİHAT DAĞLI

Akdeniz University, Antalya, Turkey

email: mcihatdagli@akdeniz.edu.tr

In this paper, we deal with a computational problem of one kind mean value involving certain Hardy sums and the two-term exponential sum with the help of the properties of Gauss sums, and derive some interesting precise computational formulae.

MSC 2010: 11L40, 11F20

Keywords: Dedekind sum, Hardy sum, two-term exponential sums, mean value, computational formula

- [1] T. M. Apostol, Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1976.
- [2] B. C. Berndt, Analytic Eisenstein series, theta functions and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303/304 (1978), 332-365.
- [3] H. Rademacher, E. Grosswald, Dedekind sums. Math. Assoc. of America, Washington, D.C. 1972.
- [4] T. Wang, X. Pan, The mean value involving Dedekind sums and two-term exponential sums. Science China Mathematics 55 (2012), 557-565.

New results on borderenergetic graphs

<u>CAHİT DEDE 1 , AYŞE DİLEK MADEN 2 </u>

^{1,2} Selcuk University, Konya, Turkey

emails: ¹cahitdede@gmail.com; ²aysedilekmaden@selcuk.edu.tr

The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix [1]. In this study, we present the graphs whose energy is equivalent to a complete graphs energy and this kind of graphs are called borderenergetic graphs [2]. Borderenergetic graphs are widely studied in the literature, see [2, 3, 4]. We mainly consider the line graphs of regular and strongly regular graphs. Firstly, we obtain a condition for the line graph of disconnected regular graph consisting of p copies of connected regular integral graph and q copies of complete graph to be borderenergetic. Also we present a condition for the line graph of strongly regular graphs to be borderenergetic. In addition, we obtain the similar result for the complement of a strongly regular graph. Finally, we show by examples that there exist connected borderenergetic graphs, different from the complete graph.

MSC 2020: 05C50, 05C75, 05C76

Keywords: Borderenergetic graph, line graph, strongly regular graph

Acknowledgement: The second author is partially supported by TUBITAK and the Scientific Research Project Office (BAP) of Selcuk University.

- [1] I. Gutman, The energy of a graph. Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978), 1-22.
- [2] S. C. Gong, X. Li, G. H. Xu, I. Gutman, B. Furtula, Borderenergetic graphs. MATCH Commun. Math. Comput. Chem. 74 (2015), 321-332.
- [3] B. Deng, X. Li and I. Gutman, More on borderenergetic graphs. *Linear Algebra Appl.* 497 (2016), 199-208.
- [4] Z. Shao, F. Deng, Correcting the number of borderenergetic graphs of order 10. MATCH Commun. Math. Comput. Chem. 75 (2016), 263-266.

An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional equation

ULVİYE DEMİRBİLEK¹, <u>VOLKAN ALA²</u>, KHANLAR R. MAMEDOV³

^{1,2,3} Mersin University, Mersin, Turkey

emails: ¹ulviyedemirbilek@gmail.com; ²volkanala@mersin.edu.tr; ³hanlar@mersin.edu.tr

In recent years, the fractional differential equations have become a useful tool for describing nonlinear phenomena of science and engineering models. Many of techniques have been applied to obtain the exact solutions of these equations.

In this work, we consider a nonlinear conformable time-fractional partial differential equation. We apply Improved Bernoulli Sub-Equation Function Method (IBSEFM) to the exact solutions. We construct the new exact solutions and plot the graphs of the solutions according to the parameters by the aid of mathematics software. The results show that this method is powerful mathematical tool to solve nonlinear conformable time-fractional equations arising in mathematical physics. Therefore, this method is very reliable, efficient and can be applied to the other nonlinear fractional differential models.

MSC 2010: 35C08, 34K20, 32W50

Keywords: Exact Solutions, conformable derivative, improved Bernoulli sub-equation function method

- R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative. J. Comput. Appl. Math. 264 (2014), 65–70.
- [2] T. Abdeljawad, On Conformable Fractional Calculus. J. Comput. Appl. Math. 279 (2015), 57–66.
- [3] V. Ala, U. Demirbilek, Kh. R. Mamedov, An Application of Improved Bernoulli Sub-Equation Function Method to the Nonlinear conformable Time Fractional SRLW Equation. AIMS Mathematics 5 (2020) no. 4, 3751-3761.

Some characterizations on totally η -umbilical real hypersurfaces of a complex space form

<u>ÖZLEM DENİZ</u>¹, MEHMET GÜLBAHAR²

^{1,2}Harran University, Şanlıurfa, Turkey

emails: ¹denizozlem729@gmail.com ; ²mehmetgulbahar@harran.edu.tr

Some inequalities involving the Riemannian curvature invariants are investigated on totally η umbilical real hypersurfaces of a complex space form. Obtained results are discussed for totally η -umbilical real hypersurfaces of the 6-dimensional complex space form.

MSC 2010: 53C15, 53C40, 53C42 Keywords: Complex space form, curvature, hypersurface

- [1] B. Y. Chen, Geometry of submanifolds and its applications. Science University of Tokyo, 1981.
- [2] B. Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications. World Scientific Publishing, Hackensack, NJ, 2011.
- [3] M. Kimura, S. Maeda, On real hypersurfaces of a complex projective space. Math. Z. 202 (1989), 299–311.
- [4] M. Kon, A characterization of totally η-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form. Czech Math. J. 58 (2008), 1279–1287.
- [5] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures. J. Math. Soc. Japan 27 (1975), 43–53.
- [6] K. Yano, M. Kon, Structures on Manifolds. World Scientific Publishing Co. Pte. Ltd., 1984.

An Artinian analogue of the Noetherian result on dimension of Noetherian modules

İSMAİL HAKKI DENİZLER

Van Yüzüncü Yıl University, Van, TURKEY

email: ismailhd@yyu.edu.tr

In this study, we present a generalization of the theorem on the Krull dimension for Artinian modules over quasi-local rings (*i.e.*, rings with only one maximal ideal) to the case where the rings are not necessarily quasi-local.

Our main objective is to give an Artinian analogue of the following well-known Noetherian result.

Let R be a semi-local commutative Noetherian ring (where semi-local means R has only finitely many maximal ideals). Then, for any finitely generated R-module N, we have

$$\dim_R(N) = d(N) = \delta(N)$$

where d(N) is the degree of the Hilbert polynomial associated to N, while $\delta(N)$ stands for the least number of elements $r_1, r_2, \dots, r_n, n \in \mathbb{N}$, of R such that $\ell_R(N/(r_1, r_2, \dots, r_n)N)$, the length of the R-module $N/(r_1, r_2, \dots, r_n)N$, is finite. (See for example [3, p. 98]. We also refer to Chapter 4 of [1] for information about Hilbert polynomials.)

MSC 2010: 13E10, 13E05, 13A15

Keywords: Artinian modules, Noetherian modules, Ideal theory

- [1] W. Bruns and J. Herzog, Cohen-Macaulay rings. Cambridge University Press, 1993.
- [2] E. Matlis, Injective modules over Noetherian rings. Pacific J. Math. 8 (1958), 511-528.
- [3] H. Matsumura, Commutative Ring Theory. Cambridge University Press, Cambridge, 1986.
- [4] R. Y. Sharp, Artinian modules over commutative rings. Math. Proc. Camb. Phil. Soc. 111 (1992), 25-33.

Lower bounds for blow up time of p-Laplacian equation with damping term

YAVUZ DİNÇ¹, ERHAN PİŞKİN², CEMİL TUNÇ³

¹ Mardin Artuklu University, Mardin, Turkey
 ² Dicle University, Diyarbakır, Turkey
 ³ Van Yuzuncu Yıl University, Van, Turkey

emails: ¹yavuzdinc@artuklu.edu.tr; ²episkin@dicle.edu.tr; ³cemtunc@yahoo.com

In this presentation, we consider the p-Laplacian wave equation with damping term. There are lot of works on lower bounds for blow up time [1, 2, 3]. We will prove a lower bounds for blow up time under suitable conditions.

MSC 2010: 35B44, 35K55 Keywords: Lower bounds, p-Laplacian equation, blow up

- F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped wave equations. Ann. I. H. Poincaré – AN. 23 (2006), 185-207.
- [2] J. Zhou, Lower bounds for blow-up time of two nonlinear wave equations. Appl. Math. Lett. 45 (2015), 64-68.
- [3] K. Baghaei, Lower bounds for the blow-up time in a superlinear hyperbolic equation with linear damping term. *Comput. Math. with Appl.* **73** (2017), 560-564.

The proper class generated injectively by socle-free modules

YILMAZ DURĞUN

Çukurova University, Adana, Turkey

email: ydurgun@cu.edu.tr

In this study, we introduced a new type of proper class, through Dickson torsion theory. A submodule U of a module V is called a semiartinian supplement (shortly, sa-supplement) submodule in V if there exists a submodule T of V such that V = T + U and $U \cap T$ is semiartinian. A sequence $0 \to A \to {}^f M \to C \to 0$ is called SAS if f(A) is an sa-supplement submodule of M. The class \mathcal{SAS} of SAS sequences is a proper class which is coinjectively generated by the class of semiartinian modules (see [2, Theorem 3.1]). We show that (1) the proper class \mathcal{SAS} is injectively generated by socle-free modules; (2) a ring R is right semiartinian if and only if every maximal right ideal of R has an sa-supplement in R. Moreover, we deal with modules which are sa-supplement in every containing module, namely sa-supplementing. Injective modules and semiartinian modules are obvious examples of sa-supplementing modules. It is shown that (1) an sa-supplementing module M is closed under sa-supplement quotients if and only if M/sa(M) is injective; (2) a projective module P is sa-supplementing if and only if P/sa(P) is a quotient of an injective module; (3)R is right semiartinian if and only if every right *R*-module is sa-supplementing; (4) *R* is right SSI ring, i.e. every semisimple right module is injective if and only if every right module is sa-supplementing. Furthermore, we studied modules whose all submodules are sa-supplement and modules whose all sa-supplement submodules are direct summand.

MSC 2010: 16D10, 18G25, 16D50

Keywords: Proper class of short exact sequences, sa-supplement submodule, sa-supplementing modules, semiartinian modules

Acknowledgement: This work was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project number: 119F176).

- R. Alizade, Y. M. Demirci, Y. Durğun and D. Pusat, The proper class generated by weak supplements. *Comm. Algebra* 42 (2014), no. 1, 56-72.
- [2] T. Kepka, On one class of purities. Comment. Math. Univ. Carolinae 14 (1973), 139–154.
- [3] K. A. Byrd, Rings whose quasi-injective modules are injective. Proc. Amer. Math. Soc. 33 (1972), 235-240.
- [4] J. Clark, J. C. Lomp, N. Vanaja, R. Wisbauer Lifting Modules: Supplements and Projectivity in Module Theory. *Birkhäuser Verlag, Basel*, 2006.

Second order numerical method for the singularly perturbed Fredholm integro-differential problem with zeroth order reduced equation

MUHAMMET ENES DURMAZ¹, <u>MUSA CAKIR</u>², GABIL M. AMIRALIYEV³

^{1,3} Erzincan Binali Yıldırım University, Erzincan, Turkey
² Van Yüzüncü Yıl University, Van, Turkey

emails: ¹menesdurmaz025@gmail.com; ²cakirmusa@hotmail.com; ³gabilamirali@yahoo.com

We study the convergence of the homogeneous finite difference method for singularly perturbed Fredholm integro-differential equation with two parameters. Numerical method based on using integral identities with exponential basis functions and interpolating quadrature rules with the weight and remainder terms in integral form. We establish second order uniform convergence on a special non-uniform mesh. Numerical results illustrating the efficiency of the method are presented.

MSC 2010: 45J05, 65L11, 65L12, 65L20

Keywords: Fredholm integro-differential equation, singular perturbation, finite difference method, uniform convergence

- [1] G. M. Amiraliyev, M. E. Durmaz and M. Kudu, Uniform convergence results for singularly perturbed Fredholm integro-differential equation. J. Math. Anal. 9 (2018), no. 6, 55-64.
- [2] M. Cakir and G. M. Amiraliyev, Numerical solution of a singularly perturbed threepoint boundary value problem. Int. J. Comput. Math. 84 (2007), no. 10, 1465-1481; doi:10.1080/00207160701296462.
- [3] P. A. Farrel, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers. *Chapman and Hall/CRC, New York*, 2000.

Solution of Duffing equation with Fourier decomposition method

MURAT DÜZ

Karabük University, Karabük, TURKEY

emails: mduz@karabuk.edu.tr

In this article, we aim to find an alternative solution to the Duffing Equation, which is an important ordinary differential equation in mathematical physics. We used for solution Fourier Transform and Adomian decomposition method. Adomian polynomials have been used for nonlinear term. Finally we obtained the complete solution by using the Pade Approach from the approximate solutions founded with the Fourier Decomposition Method.

MSC 2010: 42A38, 34A34, 34B30 Keywords: Duffing equation, Fourier transform, Adomian decomposition method

- [1] E. Yusufolu, Numerical solution of Duffing equation by the Laplace decomposition algorithm. *Appl. Math. Comput.* **177** (2006), 572-580.
- [2] K. Tabatabaei, E. Gunerhan, Numerical solution of Duffing equation by the differential transform method. Applied Mathematics & Information Sciences Letters 2 (2014), 1-6.

A numerical approach for solving singularly perturbed neutral type delay differential problem

<u>YILMAZ EKINCI¹, ERKAN CIMEN², MUSA CAKIR³</u>

^{1,2,3} Van Yuzuncu Yil University, Van, Turkey

emails: ¹ylmz_eknc@hotmail.com; ²cimenerkan@hotmail.com; ³cakirmusa@hotmail.com

In this paper, we deal with singularly perturbed neutral type delay differential problem. We propose an efficient numerical approach for solving this problem. We analyze the precise knowledge about the behavior of the exact solutions of the problem and its derivative. Then, we construct a finite difference scheme on an appropriate piecewise Shishkin type mesh. It is prove that the method is almost first order convergent in discrete maximum norm with respect to the perturbation parameter. Furthermore, numerical results which support these theoretical results are presented.

MSC 2010: 34K40, 65L11, 65L12, 65L20, 65L70

Keywords: Singularly perturbed problem, neutral type, finite difference scheme, uniform convergence

- [1] J. K. Hale, Introduction to Functional Differential Equations. Springer, New York, 1993.
- [2] H. G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods Singularly Perturbed Differential Equations. Springer, Berlin, 2008.
- [3] E. Cimen and Y. Ekinci, Numerical method for a neutral delay differential problem. Int. J. Math. Comput. Science 1 (2017), 1–11.

Reasons for students preparing for university examination willing to choose mathematics teaching

ELİF ERTEM AKBAS¹, MURAT CANCAN², <u>KÜBRA ALAN³</u>

^{1,2,3} Van Yüzüncü Yıl University, Van, Turkey

emails: ¹elifertem@yyu.edu.tr; ²mcancan@yyu.edu.tr; ³kubraalan37@gmail.com

The profession of mathematics is known to be difficult in society. However, mathematics is used in every field. In this direction, in this study, it is aimed to determine the factors that effect the choices of the students who are preparing for university exam and considering to choose mathematics teaching department. In this study, where qualitative research method was adopted, focus group interview was used as data collection technique. The aim of the focus group interviews is to gain in-depth, detailed and multidimensional qualitative information about the participants' perspectives, experiences, interests, experiences, tendencies, thoughts, perceptions, emotions, attitudes and habits on a given topic. In this context, the participants' perceptions and situations they want to attract attention in a suitable environment within the framework of the interviews are discussed. The participants were selected by purposeful sampling method among the students preparing for the university exam. In the study, as a data collection tool, firstly, some of the questions included in the scale of the reasons for choosing the teaching profession prepared by Ozsoy, Ozsoy, Ozkara and Memis (2010) were compiled and interview questions was prepared. Afterwards, the semi-structured interview form, which was created by finalizing the interview questions in line with the opinions of 3 professors who were experts in their fields, was used as the data collection tool of this study. As a result of the findings of the study, it was seen that the reasons for choosing mathematics teaching profession could be examined under seven headings as the reasons for choosing mathematics teaching profession are the effect of family and close environment, the effect of the teacher, the interest of this profession in web based examinations, the effect of job anxiety and guarantee, the effect of students' ideals, the effect of whether the profession is suitable for the cats and the needs of the education system and the desire to meet them. In addition, it was determined that some of the students who prepared for the exam did not have any negative thoughts about mathematics course even though they interpreted mathematics as a difficult course.

MSC 2010: 97C30, 97C80

Keywords: Mathematics teaching profession, student opinion, reasons for choosing a profession

References

 G. Ozsoy, S. Ozsoy, Y. Ozkara, A. D. Memis, Factors affecting pre-service teachers choice of teaching as a profession. *Elementary Education Online* 9 (2010), no. 3, 910-921.

Analysis of the difficulties faced by 6th and 7th grade students in the circle sub-learning area teaching process through metaphor

ELİF ERTEM AKBAS¹, MURAT CANCAN², CEREN GÜRBÜZ³, <u>KÜBRA ALAN⁴</u>

^{1,2,3,4} Van Yüzüncü Yıl University, Van, Turkey

emails: ¹elifertem@yyu.edu.tr; ²mcancan@yyu.edu.tr; ³ceren.gurbuz@hotmail.com; 4 kubraalan37@gmail.com

Mathematics is one of the basic courses of the curriculum that includes abstract elements. Geometry, on the other hand, constitutes the observable side of mathematics science, which is full of abstract concepts. However, there may be some difficulties due to many factors affecting the learning process. In this study, it is aimed to determine the difficulties faced by the 6th and 7th grade students in the teaching process of the circle sub-learning area with the help of metaphors. Metaphors are considered as a powerful mental tool that individuals can work to explain in understanding a highly abstract, complex or theoretical phenomenon (Cerit, 2008; Lakoff and Johnson, 2010). Phenomenology, which is one of the qualitative research methods, was used in the study. The data of the study was obtained by completing the sentences of When I learn the circle, which is the geometric shape, I find ... most difficult to do so. Because ... by 140 students studying in 6th (80 students) and 7th (60 students) grades. At the end of the study, it was seen that students developed metaphors in 7 different categories regarding the difficulties they faced during the circle teaching process. These categories are drawing circle with standard and open equations; spring length measurements; degrees and radians; internal, external, central and peripheral angle concepts; angles in triangular and rectangular regions within the circle; problems with shapes drawn in circles; tangent problems in circles. Among these categories, the most produced metaphor was found to be in the category of problems with shapes drawn in circles and tangential problems in circles. In addition, it was found that the 7th grade students developed more metaphors than the 6th grade students regarding the difficulties encountered during the circle teaching process.

MSC 2010: 97C30, 97C80

Keywords: Geometry, circle, difficulties encountered, metaphor, secondary school students

- Y. Cerit. Ogretmen kavrami ile ilgili metaforlara iliskin Ogrenci, Ogretmen ve yoneticilerin Gorusleri. Turk Egitim Bilimleri Dergisi 6 (2008), no. 4, 693–712.
- [2] G. Lakoff, M. Johnson. Metaforlar-hayat, anlam ve dil. Paradigma Yayinevi, Istanbul, 2010.

Notes on the Hewitt realcompactification of an orbit space

SADIK EYİDOĞAN

Çukurova University, Adana, Turkey

email: seyidogan@cu.edu.tr

K. Srivastava [1] showed that when the action of a finite topological group on a Tychonoff space is given, the Stone-Čech compactification of the orbit space of the action is the orbit space of the Stone-Čech compactification of the space. We show that this statement holds also for the Hewitt realcompactification.

MSC 2010: 54D60, 54C45 Keywords: Realcompactification, orbit space, real maximal ideal

- K. Srivastava, On the Stone-Čech Compactification of an orbit space. Bull. Austral. Math. Soc. 36 (1987), 435–439.
- [2] E. Hewitt, Rings of Real-Valued Continuous Functions. I. Trans. Amer. Soc. 64 (1948), 45-99.
- [3] L. Gillman and M. Jerison, Rings of Continuous Functions. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.

On generalized covering spaces and monodromy groups

<u>NECAT GORENTAS¹</u>, SEYED ZEYNAL PASHAEI²

¹ Van Yuzuncu Yil University, Van, Turkey
² Ferdowsi University of Mashhad, Mashhad, Iran

emails: ¹ngortas@yahoo.com ; ²szpashaei1986@yahoo.com

In this talk, after reviewing concepts of generalized covering spaces and monodromy group $\pi(p, x_0)$ for any map $p: \widetilde{X} \to X$ with the unique path lifting property, we give some conditions under which generalized covering map $p: \widetilde{X} \to X$ is maximal.

MSC 2010: 57M05, 55M12 Keywords: Fundamental group, generalized covering spaces, monodromy groups

- [1] J. Brazas, Generalized covering space theories. Theory Appl. Categ. 30 (2015), 1132-1162.
- [2] J. Dydak, Coverings and fundamental groups: a new approach, *Preprint. arXiv:1108.3253v1.* 390 (2011).
- [3] H. Fischer, A. Zastrow, Generalized universal covering spaces and the shape group, *Fund. Math.* 197 (2007), 167196.
- [4] E. Spanier, Algebraic Topology. McGraw-Hill, 1966.

On the exponential stability of delay neutral equations with periodic coefficients

MELEK GÖZEN¹, CEMİL TUNÇ ²

 1,2 Van Yuzuncu Yil University, Van, Turkey

emails: ¹m.gozen@yyu.edu; ²cemiltunc@yyu.edu;

In this work, we investigate the exponentially stability of solutions of a class of nonlinear timevarying delay differential systems of neutral type with periodic coefficients. We obtain new sufficient conditions for the exponential decay of the solutions at infinity. We prove a theorem on the existence of the solutions. The technique of the proof is based on the direct Lyapunov method. Our result has contribution to the former and related literature on the topic of the paper.

MSC 2010: 34K20, 34K06, 34K40

Keywords: Neutral differential equations, exponential stability, time-varying delay

- I. Györi and G. Ladas, Oscillation theory of delay differential equations. With applications. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.
- [2] C. Tunç, Stability and boundedness results on certain nonlinear vector differential equations of fourth order. *Nelnn Koliv.* 9 (2006), no. 4, 548563; reprinted in *Nonlinear Oscil.* (N. Y.) 9 (2006), no. 4, 536-551.
- [3] M. Gözen and C. Tunç, On exponential stability of solutions of neutral differential systems with multiple variable delays. *Electron. J. Math. Anal. Appl.* 5 (2017), no. 1, 17-31.
- [4] I. I. Matveeva, On the exponential stability of the solutions of neutral type linear periodic systems with variable delay. (Russian) Sib. Elektron. Mat. Izv. 16 (2019), 748-756.
- [5] I. I. Matveeva, Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients. *Electron. J. Differential Equations* 20 (2020), 1-12.

Detecting affine equivalences of ruled algebraic surfaces using differential invariants

<u>UĞUR GÖZÜTOK</u>¹, HÜSNÜ ANIL ÇOBAN², YASEMİN SAĞIROĞLU³

^{1,2,3} Karadeniz Technical University, Trabzon, Turkey

emails: ¹ugurgozutok@ktu.edu.tr; ²hacoban@ktu.edu.tr; ³sagiroglu.yasemin@gmail.com

Recently some authors investigated the symmetries, similarities and affine equivalences of ruled algebraic surfaces [1, 2]. In these studies, the authors construct some efficient algorithms that detect symmetries, similarities and affine equivalences of ruled algebraic surfaces. In this presentation, we investigate also the affine equivalences of ruled algebraic surfaces. However our approach is different. Firstly, we give affine differential invariants of curves. Then we reduce affine equivalence of surfaces to a new type of equivalence of curves forming the surfaces. Finally, we detect all affine equivalences of ruled algebraic surfaces.

MSC 2010: 53A55, 68W30, 14Q05 Keywords: Affine differential invariants, ruled surfaces, algebraic curves

- [1] J. G. Alcazar, E. Quintero, Affine equivalences, isometries and symmetries of ruled rational surfaces. J. Comput. Appl. Math. **364** (2020), 112339, 14 pp.
- [2] M. Hauer, B. Jütler, Projective and affine symmetries and equivalences of rational and polynomial surfaces. J. Comput. Appl. Math. **349** (2019), 424-437.

Variational iteration method for solving the linear 3D Schrödinger equation

 $\underline{\rm ECE~GUNES}^1,\,{\rm ARZU~GULEROGLU}^2$

^{1,2}Trakya University, Edirne, Turkey

emails: ¹ecegunes@trakya.edu.tr; ²arzuguleroglu@trakya.edu.tr

In this paper, the linear 3D time-dependent Schrödinger equation has been solved by using wellknown He's variational iteration method. The results show that the variational iteration method is a powerful mathematical tool to solve Schrödinger equation with highly accuracy.

MSC 2010: 35A15, 35C05, 81Q05

Keywords: Three-dimensional Schrödinger equation, variational iteration method, variational theory, high accuracy

- [1] Kh. Hosseinzadeh, An analytic approximation to the solution of Schrödinger equation by VIM. *Appl. Math. Sci.* **11** (2017), no. 16, 813-818; doi:10.12988/ams.2017.08162.
- [2] J.H. He, A new approach to nonlinear partial differential equations. Comm. Nonlinear Sci. Numer. Simul. 2 (1997), no.4., 230-235; doi:10.1016/S1007-5704(97)90007-1.
- [3] J.H. He, Approximate analytical adultion for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Engrg. 167 (1998), no. 1-2, 57-68; doi:10.1016/S0045-7825(98)00108-X.
- [4] J.H. He, Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34 (1999), no. 4, 699-708; doi:10.1016/S0020-7462(98)00048-1.
- [5] J.H. He, Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114 (2000), no. 2-3, 115-123; doi:10.1016/S0096-3003(99)00104-6.
- [6] J.H. He and X. H. Wu, Variational iteration method: new development and applications. Comput. Math. Appl. 54 (2007), no. 7-8, 881-894; doi:10.1016/j.camwa.2006.12.083.
- [7] R. Eskar, P. Huang and X. Feng, A new high-order compact ADI finite difference scheme for solving 3D nonlinear Schrödinger equation. Adv. Differ. Equ. (2018), Article number: 286 (2018); doi:10.1186/s13662-018-1700-1.

Comparison of the performances of the fiducial-based tests using M and MML estimators in one-way ANOVA

<u>GAMZE GÜVEN¹</u>, HATİCE ŞAMKAR², BİRDAL ŞENOĞLU³

^{1,2} Eskisehir Osmangazi University, Eskisehir, Turkey³ Ankara University, Ankara, Turkey

emails: ¹gamzeguven@ogu.edu; ¹hfidan@ogu.edu; ²senoglu@science.ankara.edu

In this study, we propose a test based on M-estimators suggested by Huber [3] in the context of one-way ANOVA. While developing this test, fiducial approach proposed by Fisher [4, 5, 6] is utilized. In this approach, it is possible to obtain a probability distribution for the parameter of interest without any prior information by means of data generating equation. In the literature, there are very few studies developing tests by using the fiducial approach in the context of one-way ANOVA, see for example Li et al. [7] and Gven et al. [1] for details. Also, the performance of the proposed test is compared with the test based on Tiku's modified maximum likelihood (MML) estimators [2] via Monte Carlo simulation study, see Gven et al. [1]. An application of the proposed test is given at the end of the study.

MSC 2010: 62F03, 62F10, 62F35

Keywords: Fiducial Approach, One-Way ANOVA, M-Estimators, MML Estimators, Monte-Carlo Simulation

- G. Güven, Ö. Gürer, H. Şamkar and B. Şenoğlu, A fiducial-based approach to the one-way ANOVA in the presence of nonnormality and heterogeneous error variances. J. Stat. Comput. Sim. 89 (2019), no. 9, 1715-1729; doi:10.1080/00949655.2019.1593985.
- [2] M. L. Tiku, Estimating the mean and standard deviation from a censored normal sample. Biometrika. 54 (1967), no. 1-2, 155-165; doi:10.1093/biomet/54.1-2.155.
- [3] P. J. Huber, Robust estimation of a location parameter. Ann. Math. Stat. 33 (1964), no. 1, 73-101; doi:10.1214/aoms/1177703732.
- [4] R. A. Fisher, Inverse probability. Math. Proc. Cambridge. Philos. Soc. 26 (1930), no. 4, 528-535; doi: 10.1017/S0305004100016297.
- [5] R. A. Fisher, The concepts of inverse probability and fiducial probability referring to unknown parameters. *Proc. R. Soc. Lond. A.* **139** (1933), no. 838, 343-348; doi:10.1098/rspa.1933.0021.
- [6] R. A. Fisher, The fiducial argument in statistical inference. Ann. Eugen. 6 (1935), no. 4, 391-398; doi:10.1111/j.1469-1809.1935.tb02120.x.
- [7] X. Li, J. Wang and H. Liang, Comparison of several means: a fiducial based approach. Comput. Stat. Data. An. 55 (2011), no. 5, 1993-2002; doi:10.1016/j.csda.2010.12.009.

A novel NTRU-like public key encryption scheme over group rings

TURGUT HANOYMAK¹, ÖMER KÜSMÜŞ²

^{1,2} Van Yüzüncü Yıl University, Van, Turkey

emails: ¹turguthanoymak@gmail.com; ²omerkusmus@yyu.edu.tr;

NTRU is a public-key encryption scheme which is based on quotient ring of polynomials [1]. The popularity of NTRU comes from its speed related to encryption and decryption processes and it also serves post-quantum cryptography while the classical public-key encryption schemes such as RSA and ECC are vulnarable in terms of security against quantum computers. There are many algebraic variants of NTRU such as GTRU, MaTRU, QTRU in [2], [3], [4] respectively. In this study, we construct a novel NTRU-like public-key cryptosystem based on polynomials over group rings.

MSC 2010: 81P94, 94A60, 94A62 **Keywords:** Group ring, NTRU, GTRU, MaTRU, QTRU

- J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A ring-based public key cryptosystem. In: Proc. Int. Algorithmic Number Theory Symp. (1998), 267-288.
- [2] L. Shuai, H. Xu, L. Miao and X. Zhou, A Group-Based NTRU-Like Public-Key Cryptosystem for IoT. *IEEE Access* 7 (2019), 75732-75740; doi: 10.1109/ACCESS.2019.2920860.
- [3] M. Coglianese and B. M. Goi, MaTRU: A New NTRU-Based Cryptosystem. In: Progress in Cryptology - INDOCRYPT, Lecture Notes in Computer Science, vol 3797, Springer, Berlin, Heidelberg (2005).
- [4] E. Malekian, A. Zakerolhosseini, A. Mashatan. QTRU: Quaternionic Version of the NTRU Public-Key Cryptosystems. Int. J. Inf. Secur. 3 (2011), 2942.

Invariant differential operators of the group SO(3,2)

<u>**YASEMIN ISIK**</u>¹, MEHMET SEZGIN²

^{1,2}Trakya University, Edirne, Turkey

emails: ¹isikyasemin1@gmail.com; ²msezgin@yahoo.com

Two different parameterization of the homogenous space on which SO(3,2) group acts are considered. The infinitesimal operators of the quasi-regular representation of the group are obtained for these parameterizations. Using the infinitesimal operators, quadratic Casimir operators are given simultaneously.

MSC 2010: 22E60, 22E70, 20C33 Keywords: Lie group and algebra, Casimir operator, Representation theory

- H. Casimir, Über die konstruktion einer zu den irreduziblen Darstellungen halbeinfacher kontnuierlicher gruppen gehörigen differenzialgleicnung. Proc. Roy. Akad. Amst. 34 (1931), 844–846.
- [2] N. Ja. Vilenkin, A. U. Klimyk, Representations of Lie Groups and Special Functions, Vol I-II. *Kluwer Academic Publishers, The Netherlands*, (1993).
- [3] M. Sezgin, Y. A. Verdiyev, Quantum Integrable Systems of the Group SU(1, 1). Tr. J. Phys. 22 (1998), 939-948.

Bifurcation analysis of a discrete population model with conformable fractional derivative

<u>GUVEN KAYA¹</u>, SENOL KARTAL²

 1 Bingol University, Bingol, Turkey 2 Nevsehir
 Haci Bektas Veli University, Nevsehir, Turkey

emails: ¹gkaya@bingol.edu.tr; ²senol.kartal@nevsehir.edu.tr

In this study, we have considered a conformable fractional order differential equations with piecewise constant arguments for modeling a population model. First of all, we apply a discretization process to the model and obtain two dimensional discrete dynamical system. Secondly, necessary and sufficient stability conditions are determined by using the Schur Cohn criterion. In addition, bifurcation analysis show that the discrete system enters both Flip bifurcation and Neimark-Sacker bifurcation according to changing parameter r around the positive equilibrium point. All these mathematical results are interpreted biologically and provide a recipe for controlling the population. Finally, numerical simulations are used to demonstrate the accuracy of all theoretical results.

MSC 2010: 26A33, 34A08, 39A28, 39A30, 92B05

Keywords: Conformable fractional derivative, Piecewise constant arguments, Stability, Flip and Neimark-Sacker bifurcation

- [1] R. Khalil, M. Al Horani, A. Yousef and et al., A new definition of fractional derivative. J. Comput. Appl. Math. 264 (2014), 65–70.
- [2] S. Kartal, F. Gurcan, Discretization of conformable fractional differential equations by a piecewise constant approximation. *Int. J. Comput. Math.* **96** (2019), 1849–1860.
- [3] J. Guckenheimer, P. Holmes, Nonlinear oscillation, Dynamical Systems and Bifurcations of Vector Fields. *Springer-Verlag, New York*, 1983.
- [4] S. Kartal, Flip and Neimark-Sacker bifurcation in a differential equation with piecewise constant arguments model. J. Differ. Equ. Appl. 23 (2017), no. 4, 763–778.
- [5] I. Ozturk, F. Bozkurt, F. Gurcan, Stability analysis of a mathematical model in a microcosm with piecewise constant arguments. *Math. Biosci.* **240** (2012), 85-91.

Generalization of Hardy-Copson type inequalities to time scale nabla calculus

ZEYNEP KAYAR¹, BİLLUR KAYMAKÇALAN²

¹ Van Yüzüncü Yil University, Van, Turkey
² Çankaya University, Ankara, Turkey

emails: ¹zeynepkayar@yyu.edu.tr; ²billurkaymakcalan@gmail.com

In this talk several Hardy-Copson type dynamic inequalities are obtained via time scale nabla calculus. These inequalities are nabla counterparts of their delta versions and generalize and unify their continuous and discrete analogues.

MSC 2010: 34N05, 26D10, 26D15 Keywords: Time scale nabla calculus, Hardy inequality, Copson inequality

Mickens' type exact and nonstandard finite difference schemes for the generalized version of diffusion reaction equation

<u>SHEERIN KAYENAT</u>¹, AMIT K. VERMA²

^{1,2} Indian Institute of Technology, Patna, India

emails: ¹ sheerin.pma16@iitp.ac.in; ² akverma@iitp.ac.in

We consider the following class of generalized diffusion reaction (GDR) equation:

$$D\phi_{xx} = \phi_t + k\phi\phi_x - \alpha w + \beta w^2, \quad 0 \le x \le 1, \ t \ge 0, \tag{1}$$

subject to certain initial and boundary conditions. Here D > 0, k = -2D, $\beta \neq 0$ and $\left\{ \frac{\alpha}{\beta} \in \mathbb{R} \geq 0 \right\}$. With the help of solitary wave solution of GDR equation, we develop the exact finite difference (EFD) scheme for (1). Furthermore a non-standard finite difference (NSFD) scheme is developed. The properties like positivity and boundedness is proved to be preserved by the proposed NSFD scheme. The scheme is shown to be stable, consistent and first-order accurate in both space and time. Approximate solutions of the GDR equation under given initial and boundary conditions are obtained using NSFD scheme and the maximum error of the computed solutions are calculated. The comparison has been made with other existing methods in order to depict the supremacy of our method. The scheme gives good accuracy even for few spatial division. Recently Namjoo et al. ([1]) have constructed the EFD and NSFD schemes for (1) with $\alpha = \beta$. The author has taken D, α as non-negative and k as positive. The authors have not discussed the stability of the NSFD scheme. Later Verma et. al ([1]) have constructed the EFD and NSFD schemes for the generalized Burger Fisher equation. Equation (1) is the generalized version of both [1] and [2, $\theta = 1$].

MSC 2010: 74S20, 65M06, 35K57, 35K61

Keywords: Non-standard finite difference scheme, stability, consistency, exact finite difference scheme, generalized diffusion reaction.

Acknowledgement: We are thankful to Prof. R.E. Mickens whose ideas are applied while constructing the EFD and NSFD schemes for GDR equation.

- M. Namjoo, M. Zeinadini and S. Zibaei Nonstandard finite difference scheme to approximate the generalized Burgers Fisher equation. *Mathematical Methods in the Applied Sciences* 41 (2018), no. 17, 8212–8228; doi:10.1002/mma.5283.
- [2] A. K. Verma, S. Kayenat, On the stability of Micken's type NSFD schemes for generalized Burgers Fisher equation. *Journal of Difference Equations and Applications* 25 (2019), no. 12, 1706–1737; doi:10.1080/10236198.2019.1689236.

On an initial and nonlocal integral boundary condition for a mixed type equation

<u>VEYSEL KILINC¹</u>, KHANLAR R. MAMEDOV²

^{1,2}Mersin University, Mersin, Turkey

emails: ¹veysel.kilinc2012@gmail.com; ²hanlar@mersin.edu.tr

In this study, on an initial and boundary value problem for a mixed type equation is considered. A uniqueness theorem for the solvability of this problem is shown and constructed the solution as the sum of Fourier series. The stability of the solution with respect to initial function is proved.

In mathematical physics equations, nonlocal boundary conditions show that physical process not only at the point but also at the whole object. This type boundary conditions are examined in [1]-[4] and many other works for different mathematical physics equations.

MSC 2010: 35M11, 35M12, 35M13

Keywords: Mixed type partial differential equation, integral condition, initial and boundary conditions

- I. M. Gelfand, Some a questions of analysis and differential equations. Upsekhi Mat. Nouk [Russian Math. Surveys] 14 (1959), no. 3, 3-19, [Am.Math. Soc. Transl., II Ser. 26, 201-219 (1963)].
- [2] N. I. Ionkin, Solution of a boundary value problem in heat conduction with a non-classical boundary conditio. *Diff. Eqs.* 7 (1977), no. 13, 204211.
- [3] J. R. Cannon, The solution of the heat equation subject to the specification of energy. Quarterly of Applied Mathematics 21 (1963), no. 2, 155-160.
- [4] L. I. Kamynin, A boundary value problem in the theory of heat conduction with a nonclassical boundary condition. *Computational Mathematics and Mathematical Physics* 4 (1964), no. 6, 33-59.

The number of *m*-nilpotent elements in nilpotent subsemigroup of Catalan monoid

EMRAH KORKMAZ

Çukurova University, Adana, Turkey

emails: emrahkorkmaz90@gmail.com

Let \mathcal{C}_n be the Catalan monoid, that is, the semigroup of all order-preserving and order-decreasing full transformations of a finite chain, say $X_n = \{1, 2, ..., n\}$, let $N(\mathcal{C}_n)$ be the set of all nilpotent elements of \mathcal{C}_n . For each a of a finite semigroup S with zero 0, is called nilpotent if $a^m = 0$ for some $m \in \mathbb{Z}^+$, and furthermore, a is called m-nilpotent provided that $a^m = 0$ and $a, a^2, ..., a^m$ distinct. In this talk, we obtain a formula for the number of m-nilpotent elements, and so the number of m-potent elements in $N(\mathcal{C}_n)$ for $1 \leq m \leq n-1$.

MSC 2010: 20M20, 05A15

Keywords: Order-preserving, order-decreasing, nilpotent, m-nilpotent

- [1] A. Umar, Semigroups of order-decreasing transformations: the isomorphism theorem. *Semigroup Forum* **53** (1996), 220-224.
- [2] A. Laradji, and A. Umar, Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), 5162.
- [3] A. Laradji, and A. Umar, On the number of nilpotents in the partial symmetric semigroup. Comm. Algebra **32** (2004), 3017-3023.
- [4] A. Laradji, and A. Umar, On certain finite semigroups of order-decreasing transformations I. Semigroup Forum 69 (2004), 184-200.
- [5] G. Ayık, H. Ayık and M. Koç, Combinatorial results for order-preserving and order-decreasing transformations. *Turk. J. Math.* 35 (2011), 1-9.
- [6] G. Ayık, H. Ayık, Y. Ünlü and J.M. Howie, The structure of elements in finite full transformation semigroups. Bull. Austral. Math. Soc 71 (2005), 69-74.
- [7] J. M. Howie, Fundemantals of Semigroup Theory. Oxford University Press, New York, 1995.
- [8] J. M. Howie, Products of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17 (1970/71), 223-236.
- [9] O, Sönmez, and Y, Ünlü, *m*-Potent elements in order-preserving transformation semigroups and ordered sets. Comm. Algebra 42 (2014), 332-342.
- [10] P.M. Higgins, Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Cambridge Phil. Soc. 113 (1993), 281-296.
- [11] R.P. Grimaldi, Discrete and Combinatorial Mathematics. Pearson Education, Inc, USA, 2003.
- [12] S. Sornsanam, and R.P. Sullivan, Regularity conditions on order-preserving transformation semigroups. *Southeast Asian Bull. Math.* 28 (2004), 333-342.

L^P - solutions integro-differential equations with singular nonlinear kernels

ERDAL KORKMAZ¹, CEMİL TUNC²

¹ Mus Alparslan University, Mus, Turkey
 ² Yuzuncu Yil University, Van, Turkey

emails: ¹e.korkmaz@alparslan.edu.tr; ²cemiltunc@yyu.edu.tr;

In this study, we focus on a variety of scalar integro-differential equations with singular nonlinear kernels including linear, nonlinear, and resolvent equations. The primary consequence contains a type of existence theorem which is associated with the fixed point mapping identified by the integro-differential equation and generates a unique solution having a continuous derivative in a very simple manner. Then we obtain qualitative properties of solutions by constructing a Liapunov functional.

MSC 2010: 34K05, 45M10

Keywords: Integro differential equations, Lyapunov functionals, L^P solutions

- T. A. Burton, B. Zhang, Periodicity in delay equations by direct fixed point mappings. *Differ.* Equ. Dyn. Syst. 6 (1998), 413-424.
- [2] T. A. Burton, A Liapunov functional for a singular integral equation. Nonlinear Anal. 73 (2010), 3873-3882.
- [3] T. A. Burton and I. K. Purnaras. Lp-solutions of singular integro-differential equations. Journal of Mathematical Analysis and Applications 386 (2012), no. 2, 830-841.
- [4] R. Grimmer, G. Seifert, Stability properties of Volterra integrodifferential equations. J. Differential Equations 19 (1975), 142-166.
- [5] J. J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc. 14 (1963), 534-541.
- [6]] V. Volterra, Sur la thorie mathematique des phnoms hrditaires, J. Math. Pures Appl. 7 (1928), 249-298.

On the Chebyshev-S polynomials and their matrix form

AHMET ZAHİD KÜÇÜK

Karabuk University, Karabuk, Turkey

email: azahidkucuk@karabuk.edu.tr

The polynomials defined by the relation $S_n(x) = U_n\left(\frac{x}{2}\right)$ are called Chebyshev-S [1] such that $U_n(x)$ denote the Chebyshev polynomials of the second kind. The elements of $\{S_n(x)\}$ family are derived from using the recursive relation $S_n(x) = x \cdot S_{n-1}(x) - S_{n-2}(x)$ with the initial conditions are $S_{-1}(x) = 0$, $S_0(x) = 1$ and $S_1(x) = x$ [1].

In this study, some of the applications given by W. Lang [2] related the Chebyshev-S polynomials has been introduced firstly. Then these polynomials are converted to a matrix form. In the system formed by thus, it has been focused on matrices which are coefficients matrix and inverse of coefficient matrix. The inverse matrix is associated with the Catalan numbers. It has been indicated that both matrices can be constructed with the help of the convolution of their columns. Moreover, whether both matrices are Riordan type matrix has been studied in this study.

MSC 2010: 11C08, 11C20, 15B36

Keywords: Chebyshev polynomials, Catalan triangle, Pascal-like convolution matrix, Riordan type matrix

- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers. *Fibonacci Quarterly*38 (2000), no. 5, 408-419.
- [2] W. Lang, Chebyshev S-polynomial coefficient table-10 applications of these polynomials. OEIS(The On-Line Encyclopedia Integer Sequences), (2011),of https://oeis.org/A049310/a049310appl.pdf
- [3] Y. Yang and M. O. L. L. Y. Leonard, Evaluating determinants of convolution-like matrices via generating functions. Int. J. Inf. Syst. Sci 3 (2007), no. 4, 569-580.
- [4] A. Hennesy, A study of Riordan arrays with applications to continued fractions, orthogonal polynomials and lattice paths. *PhD Thesis, Waterford Institute of Technology*, 2011.
- [5] R. Askey and M. Ismail, Recurrence relations, continued fractions and orthogonal polynomials. *Mem. Am. Math. Soc.* **300** (1984).
- [6] I. Bajunaid, J. M. Cohen, F. Colonna and D. Singman, Function series, Catalan numbers, and random walks on trees. *The American Mathematical Monthly* 112 (2005), no. 9, 765-785.
- [7] L. W. Shapiro, S. Getu, W. J. Woan and L. C. Woodson, The Riordan Group. Discrete Applied Mathematics 34 (1991), no. 1-3, 229-239.

G-radical units in commutative group rings

ÖMER KÜSMÜŞ

Van Yüzüncü Yıl University, Van, Turkey

email: omerkusmus@yyu.edu.tr

Let R be a commutative ring with unity and G be an abelian group. RG and V(RG) denote the group ring of G over R and the group of all normalized units in RG respectively. A unit $u \in V(RG)$ is said to be G-radical if u = gw for some $g \in G$ and $w \in 1 + I(J(R)G; G)$ where J(R) is the jacobson radical of R and I(J(R)G; G) is a relative augmentation ideal of RG. In this study, we investigate necessary and sufficient conditions for

 $V(RG) = G \times (1 + I(J(R)G;G)).$

MSC 2010: 16S34, 16U60, 20K10, 20K20, 20K21 Keywords: Group rings, units, radical, jacobson radical, commutative rings

- N. Bourbaki, Commutative Algebra. Chapters 1-7, Elements of Mathematics (Berlin), Springer, Berlin, 1989.
- [2] P. Danchev, On a decomposition of normalized units in abelian group algebras. An. Univ. Bucuresti Mat. 57 (2008), no. 2, 133-138.
- [3] P. Danchev, Trivial units in commutative group algebras. Extracta Math. 23 (2008), no. 1, 49-60.
- [4] P. Danchev, Trivial units in abelian group algebras. Extracta Math. 24 (2009), no. 1, 47-53.
- [5] P. Danchev, G-nilpotent units of commutative group rings. Comment. Math. Univ. Carolin. 53(2) (2012), 179-187.
- [6] P. Danchev, G-unipotent units in commutative group rings. Ann. Sci. Math. Quebec 33 (2009), no. 1, 39-44.
- [7] G. Karpilovsky, On units in commutative group rings. Arch. Math. (Basel) 38 (1982), 420-422.
- [8] G. Karpilovksy, On finite generation of unit groups of commutative group rings. Arch. Math. (Basel) 40 (1983), 503-508.
- [9] G. Karpilovsky, Units of commutative group algebras. Exposition. Math. 8 (1990), 247-287.
- [10] C. P. Milies, S. K. Sehgal, An introduction to group rings. Algebras and Appl. Kluwer Dordrecht, 2002.
- [11] W. May, Group algebras over finitely generated rings. J. Algebra **39** (1976), 483-511.

Krasnoselsky canonical domains, Lyapunov functions, and the existence of Poisson bounded solutions

KIRILL LAPIN

Mordovian State Pedagogical Institute named after M.E. Evseviev, Saransk, Russia

email: klapin@mail.ru

We introduce the concepts of Poisson boundedness and Poisson partial boundedness of solution of system of ordinary differential equations, which, unlike [1]-[5], do not require, respectively, the property of Poisson boundedness and Poisson partial boundedness for nearby solutions. On the basis of the Lyapunov vector function method and the Krasnoselsky method of canonical domains, we obtain sufficient conditions for the existence of Poisson bounded solutions and partially Poisson bounded solutions.

MSC 2010: 34C11 34D20 34A12

Keywords: Poisson boundedness of solution, partial boundedness of solution, existence of solutions, Lyapunov function, Krasnoselsky canonical domain

Acknowledgement: This work is supported by the grant of the President of the Russian Federation No. MK-211.2020.1.

- K. S. Lapin, Uniform boundedness in the sense of Poisson of solutions of systems of differential equations and Lyapunov vector functions. *Differ. Equ.* 54 (2018), no. 1, 38-48; doi: 10.1134/S0012266118010056.
- [2] K.S. Lapin, Ultimate boundedness in the sense of Poisson of solutions to systems of differential equations and Lyapunov functions. *Math. Notes* 103 (2018), no. 2, 221-231; doi: 10.1134/S0001434618010236.
- [3] K.S. Lapin, Vector Lyapunov functions and ultimate Poisson boundedness of solutions of systems of differential equations. *Math. Notes* **104** (2018), no. 1, 63-73; doi: 10.1134/S0001434618070088.
- [4] K.S. Lapin, Poisson total boundedness of solutions of systems of differential equations and Lyapunov vector functions. *Math. Notes* 104 (2018), no. 2, 253-262; doi: 10.1134/S000143461807026X.
- [5] K.S. Lapin, Higher-order derivatives of Lyapunov functions and ultimate boundedness in the sense of Poisson of solutions to systems of differential equations. *Siberian Math. J.* 59 (2018), no. 6, 1100-1104; doi: 10.1134/S0037446618060137.

Mother to child transmission of HIV/AIDS and its associated factors in Jigawa State Nigeria. A generalized linear spatial modelling approach

<u>UMAR MAGAJI ALHAJI 1, A. A. AKINREFON^2</u>

¹ Jigawa State College of Education PMB 1002, Gumel Nigeria.
² Moddibo Adama University of Technology, Yola

emails: ¹zayyadbismat@gmail.com; ²umarckk04@gmail.com

Mother-to-child transmission of HIV is the spread of HIV from a woman living with HIV to her child during pregnancy, breastfeeding and at delivery. The aim of this study was to investigate mother-to-child transmission of HIV/AIDS infection and its associated factors in Jigawa State, Nigeria using Generalized Linear Spatial Model (GLSM) approach. The specific objectives of the study was to assess influence of home deliver on mother to child transmission of HIV to evaluate the extent to which model of breast feeding affects mother-to-child transmission of HIV infection. A secondary data was collected from the ART unit of five general hospitals and one specialist hospital of Jigawa State. A generalized linear spatial model was used to estimate the model parameters using Poisson Informative Prior, Multivariate Normal Prior, Independent Cauchy Prior. The analysis result revealed that mother living with HIV and children who were infected though MTCT of HIV considered in the analysis are influenced by model of delivery, mode of breast feeding, number of ANC visit, mothers knowledge on HIV status and mother age which were found to be the significant determinants f mother-to-child transmission of HIV/AIDs in Jigawa State. Therefore, this study recommended that, more prevention campaign should be planned and carried out among pregnant women living with HIV/AIDs while the monitoring system of MTCT of HIV/AIDs in Jigawa State require improvement in terms of data complement and integration to allow for better assessment of the epidemic.

MSC 2010: 91B72, 91D25, 62H11

Keywords: Mother-to-child Transmission, generalized linear spatial model (GLSM), HIV, Jigawa, Nigeria

- [1] R. Avert, Global information and education on HIV and AIDS. Prevention of mother-tochild transmission (PMTCT) of HIV retrieved from: https://www.avert.org/professionals/hivprogramming/prevention/prevention-mother-child (2017).
- [2] J. A. Nelder and R. W. M. Wedderburn, Genaralized linear models. *Journal of the Royal Statistical society* 135 (1972), 370-384.
- [3] D. Neveu, J. Viljoen, R. M. Bland, Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern perse, identifies postnatally infected infants. *Clin Infect Dis.* 52 (2011), 819–25.

Natural mates of Frenet curves in three-dimensional Lie group

MAHMUT MAK¹, <u>AYŞE CANAN²</u>

^{1,2}Kırşehir Ahi Evran University, Kırşehir, Turkey

emails: ¹mmak@ahievran.edu.tr; ²saygili.ayse93@gmail.com

In this study, we introduce the natural mate of a Frenet curve in a three dimensional Lie group \mathbb{G} with bi-invariant metric. Also, we give some relationships between a Frenet curve and its natural mate in \mathbb{G} . Especially, we obtain some results for the natural mate of a Frenet curve in \mathbb{G} when the Frenet curve is a general helix, a slant helix, a spherical curve, a rectifying curve, a Salkowski (constant curvature and non-constant torsion), anti-Salkowski (non-constant curvature and constant torsion).

MSC 2010: 53A04, 53A35, 22E15

Keywords: Natural mate, conjugate mate, helix, slant helix, spherical curve, rectifying curve, Salkowski curve, anti-Salkowski curve

- A. S. Fokas, I. M. Gelfand, Surfaces on Lie groups, on Lie algebras, and their integrability. Communications in Mathematical Physics 177 (1996), no. 1, 203-220.
- [2] D.W. Yoon, General helices of AW(k)-type in the Lie group. Journal of Applied Mathematics **2012**, Article ID 535123, (2012), 10 pages.
- [3] J. B. Ripoll, On hypersurfaces of Lie groups. Illinois Journal of Mathematics 35 (1991), no. 1, 47-55; doi:10.1215/ijm/1255987977.
- [4] O. Z. Okuyucu, et al., Slant helices in three dimensional Lie groups. Applied Mathematics and Computation 221 (2013), 672-683.
- [5] S. Deshmukh, B.Y. Chen and A. Azeb, Natural mates of Frenet curves in Euclidean 3-space. *Turkish Journal of Mathematics* **42** (2018), no. 5, 2826-2840.
- [6] S. Kaya Nurkan, İ. Arslan Güven and M. K. Karacan. Characterizations of adjoint curves in Euclidean 3-space. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89 (2019), no. 1, 155-161.
- [7] S. Kızıltuğ, M. Önder, Associated Curves of Frenet curves in Three Dimensional Compact Lie Group. *Miskolc Mathematical Notes* 16 (2015), no. 2, 953-964.
- [8] U. Çiftçi, A generalization of Lancret's theorem. Journal of Geometry and Physics 59 (2009), no. 12, 1597-1603.
- [9] Z. Bozkurt, et al., Characterizations of rectifying, normal and osculating curves in three dimensional compact Lie groups. *Life Science Journal* **10** (2013), no. 3, 819-823.

A note on the Ψ -stability of solutions of Volterra integro-differential equations

<u>KASIM MANSIZ</u>¹, CEMİL TUNÇ²

^{1,2} Van Yuzuncu Yil University, Van, Turkey

emails: ¹kasimmansiz@hotmail.com; ²cemtunc@yahoo.com

The purpose of this paper is to discuss Ψ -stability properties of solutions of some systems of Volterra integro-differential equations. Here, Ψ -stability properties of solutions are investigated by the comparison principle and based on the definitions of the Lyapunov stability and its generalizations. Moreover, some numerical examples are given for the illustrations.

MSC 2010: 34A30, 34C11, 34D05, 34D20

Keywords: Lyapunov stability; Ψ -stability; system of Volterra integrodifferential equations

- [1] A. Diamandescu, On the Ψ -Stability of a Nonlinear Volterra Integro-Differential System. *Electronic Journal of Differential Equations* **2005** (2005), no. 56, 1-14.
- [2] A. Diamandescu, On the Ψ-Asymptotic Stability of a Nonlinear Volterra Integro-Differential System. Bull. Math. Soc. Sc. Math. Roumanie, Tome 46(94) (2003), no. 1-2, 39-60.
- [3] C. Tunç, A remark on the qualitative conditions of nonlinear IDEs. Int. J. Math. Comput. Sci. 15 (2020), no. 3, 905-922.
- [4] C. Tunç, Stability and boundedness in Volterra integro-differential equations with delay. Dynam. Systems Appl. 26 (2017), no. 1, 121-130.
- [5] C. Tunç and O. Tunç, New results on the stability, integrability and boundedness in Volterra integro-differential equations. *Bull. Comput. Appl. Math.* 6 (2018), no. 1, 41-58.

On solving nonlinear Fredholm integral equation with optimization

NAJWA R. MUSTAFA

University of Baghdad, Baghdad, Iraq

email: najwarm_math @csw.uobaghdad.edu.iq

In this work optimization methods used to solve nonlinear Fredholm integral equation of the second kind. This is achieved first by substituting the integral part by a quadrature method then the problem is modified to an unconstraint optimization problem. Some examples are given.

MSC 2010: 45B05, 49M15 Keywords: Fredholm integral equation, unconstraint optimization, numerical integration

- [1] L. M. Delves, J. Walsh, Numerical Solution of Integral Equations. Clarendon Press, Oxford, 1974.
- [2] A. M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications. *Higher Education Press, Beijing and Springer-Verlag, Heidelberg*, 2011.
- [3] A. Altrk, Numerical Solution of Linear and Nonlinear Fredholm Integral Equations by Using Weighted Mean-Value Theorem. *SpringerPlus* 5 (2016); doi:10.1186/s40064-016-3645-8.
- [4] M. Heydari et al., Numerical Solution of Fredholm Integral Equations of the Second Kind by Using Integral Mean Value Theorem II. High Dimensional Problems. App. Math. Model. 37 (2013), 432-442; doi: 10.1016/j.apm.2012.03.011.
- [5] A. H. Borzabadi, O. S. Fard, Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems. Int. J. Math., Comput., Phys., Elect. and Computer Eng. 1 (2007), no. 9, 459-462.
- [6] L. M. Delves, A Fast Method for the Solution of Fredholm Integral Equations. IMA J. Appl. Math. 20 (1977), 173-182; doi:10.1093/imamat/20.2.173.
- [7] M.J. Emamzadeh, M.T. Kajani, Nonlinear Fredholm Integral Equation of the Second Kind with Quadrature Methods. J. Math. Ext. 4 (2010), no. 2, 51–58.
- [8] J.A. Ezquerro et al., Solving Nonlinear Integral Equations of Fredholm Type with High Order Iterative Methods. J. Comp. and App. Math. 236 (2011), no. 6, 1449-1463; doi: 10.1016/j.cam.2011.09.009.

Unsteady heat and mass transfer magnetohydrodynamic (MHD) convective Couette flow with thermal radiation using finite element method (FEM)

EMMANUEL OMOKHUALE

Federal University Gusau, P. M. B. 1001, Zamfara State, Nigeria

email: emmanuelomokhuale@fugusau.edu.ng

In this study, unsteady hydromagnetic convective Couette flow of a viscous, electrically conducting and incompressible fluid taking into consideration thermal radiation, diffusion and diffusion thermo effects is conducted numerically employing Finite Element Method (FEM). Computations were done for a wide range parameters of engineering interest embedded in the fluid flow problem. The effects of these flow parameters on the velocity, temperature and concentration are presented graphically while that of the skin-friction, Nusselt and Sherwood numbers are gotten and displayed in tabular forms. The obtained results are benchmarked with previously published works and was seen to be in good agreement.

MSC 2010: 65M38, 65N38, 35J05 Keywords: Magnetohydrodynamic (MHD), Free convection, FEM, Heat and mass transfer

Learning difficulties in limit primary mathematics teachers candidates

<u>BEGUM OZMUSUL</u>¹, TUGBAHAN Ş. DIZMAN², ALI BOZKURT³

Gaziantep University, Gaziantep, Turkiye

emails: ¹bgmozmsl@gmail.com; ²tsimsekler@hotmail.com; ³alibzkrt@gmail.com

This research is a qualitative study that examines the learning difficulties related to the limit, given in the Calculus 1 course of elementary mathematics teacher candidates. The research was carried out with 24 pre-service teachers selected from 90 pre-service teachers studying in the first grade of Primary Mathematics Teaching at a university and attending Calculus 1 course in 2019-2020 academic year. In this research, after the lectures of the lecturer the following questions are asked to students every week: What are the concepts and reasons you understand easily? What are the concepts and reasons that you understand hardly? If you tell the concepts given in the course of Calculus 1 to your friend, how would you tell? For the purpose of the research, the data obtained from the answers given by prospective pre-service teachers for 3 questions were analysed with content analysis. As a result of the content analysis, the sub-themes were created, which included 3 main themes, namely Epistemological Causes, Pedagogical Causes and Psychological Causes, as the learning difficulties of prospective pre-service teachers. According to the findings obtained from the research, sub-themes were obtained in the form of epistemological causes under the main theme, not to understand the definition of limit, excessive use of symbolic representation, not understanding the concept of pierced neighbourhood, lack of prior knowledge and not being able to detail the subject. Under the main theme of pedagogical reasons, sub-themes were obtained such that the lecturer explained the subject quickly, the lecturer had a different form of expression than the previous teachers seen in the high school. Under the main theme of psychological causes, sub-themes were obtained such as the physical conditions of the class, lack of attention (lack of focus), the student's bias towards the lesson and the need for more lesson time.

MSC 2010: 40A25, 97B50, 97D70

Keywords: Limit, Learning Difficulties, pre serviece mathematics teacher

- [1] B. Cornu, Limits In Advanced mathematical thinking. Ed: Tall, D., Springer, Dordrecht, 2002.
- [2] J. Lithner, University mathematics students learning difficulties. Education Inquiry, 2011.
- [3] J. Ryan, B. McCrae, Subject matter knowledge: Mathematical errors and misconceptions of beginning pre-service teachers. In Proceedings of the 29th annual conference of the International Group for the Psychology of Mathematics Education, Melbourne, 2005.

Regularity conditions for endomorphism rings of Leavitt path algebras

TUFAN ÖZDIN¹, ELIF BASAK TURKOGLU²

^{1,2}Erzincan Binali Yldrm University, Erzincan, Turkey

emails: ¹tufan.ozdin@hotmail.com; tozdin@erzincan.edu.tr; ²basakturkoglu48@gmail.com

Let E be any graph, K be any field. The Leavitt path algebras of E with coefficients in K denoted by $L := L_K(E)$ were introduced in [1] and then extended to arbitrary graphs in [2]. In [3], Abrams and Rangaswamy showed what regularity conditions of Leavitt path algebras are.

In this talk, we will give introduce endomorphism rings of Leavitt path algebras as a right module *L*. Furthermore, we will give some regularity conditions of endomorphism ring of Leavitt path algebras.

MSC 2010: 16D50, 16E50, 16W20

Keywords: Leavitt path algebras, endomorphism rings, von Neumann regular rings, locally regular rings

- A. Abrams and G. Aranda Pino, The Leavitt path algebras of a graph. J. Algebra 293 (2005), no. 2, 319-334
- [2] J A. Abrams and G. Aranda Pino, The Leavitt path algebras of abritrary graph. Houston J. Math 34 (2008), no. 2, 423-442.
- [3] G. Abrams and K. M. Rangaswamy, Regularity Conditions for Arbitrary Leavitt Path Algebras. Algebr Represent Theory 13 (2010), 319334; doi.org/10.1007/s10468-008-9125-2

Blow up of solutions for a logarithmic quasilinear hyperbolic equation with delay term

ERHAN PİŞKİN¹, <u>HAZAL YÜKSEKKAYA</u>²

Dicle University, Diyarbakır, Turkey

E mails: ¹episkin@dicle.edu.tr; ²hazally.kaya@gmail.com

In this work, we investigate a logarithmic quasilinear hyperbolic equation with a delay term in a bounded domain. Under suitable conditions, we obtain the blow up of solutions in finite time. Time delays arise in many applications, for instance, physical, chemical, biological, thermal and economic phenomena.

MSC 2010: 35L05, 35B44 Keywords: Blow up, quasilinear hyperbolic equation, delay term

- [1] E. Pişkin, On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms. *Bound. Value Probl.* **2015** (2015), no. 127.
- [2] M. Kafini, S.A. Messaoudi , Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay. *Appl. Anal.* (2018) 1-18; doi:10.1080/00036811.2018.1504029.
- [3] S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay. *Differential Integral Equations* **21** (2008), 935-958.

Rate of approximation for modified Lupaş-Jain-Beta operators

MOHD QASIM

Baba Ghulam Shah Badshah University, Rajouri, India

email: bgsbuqasim@gmail.com

The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that $\sigma(0) = 0$ and $\inf_{x \in [0,\infty)} \sigma'(x) \ge 1$. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.

MSC 2010: 41A10, 41A25, 41A36

Keywords: Generalized Jain operators, Beta basis functions, Korovkin's type theorem, Voronovskaya type theorem

- G. C. Jain, Approximation of functions by a new class of linear operators. J. Austral. Math. Soc. 13 (1972), no. 3, 271-276.
- [2] A. Lupaş, The approximation by some positive linear operators. In: proceedings of the International Dortmund meeting on Approximation Theory, Akademie Verlag, Berlin (1995), 201-229.
- [3] T. Acar, S.A. Mohiudine and M. Mursaleen, Approximation by (p, q)-Baskakov Durrmeyer Stancu operators. *Complex Anal. Oper. Theory* **12** (2018), no. 6, 1453-1468.
- [4] K.J. Ansari, M. Mursaleen and Shagufta Rahman, Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials. *Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM* **113** (2019), 1007-1024.
- [5] A. Kajla and T. Acar, A new modification of Durrmeyer type mixed hybrid operators. *Carpathian Journal of Mathematics* 34 (2018), no. 1, 47-56.
- [6] M. Mursaleen, S. Rahman and K.J. Ansari, Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators. *Filomat* 33 (2019), no. 6, 1517-1530.
- [7] M. Mursaleen, and T. Khan, On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators. Azerbaijan Jour. Math. 7 (2017), no. 1, 16-26.
- [8] M. Mursaleen, M. Nasiruzzaman, Approximation of Modified Jakimovski-Leviatan-Beta Type Operators. Constr. Math. Anal. 1 (2018), no. 2, 88-98.
- [9] M. Qasim, M. Mursaleen, A. Khan and Z. Abbas, Convergence of Generalized Lupa-Durrmeyer Operators. *Mathematics* 8 (2020), 852.

Analysis of mean time to failure of four series parallel systems with mixed standby units

<u>MUHAMMAD SAGIR ALIYU</u>¹, MANSUR BABAGANA², IBRAHIM YUSUF³

¹ Jigawa State College of Education, Gumel, Nigeria ^{2,3} Bayero University, Kano, Nigeria

emails: ¹muhammadsagiraliyu@yahoo.com; ²mbabagana.cs@buk.edu.ng; ³iyusuf.mth@buk.edu.ng

The present paper studies and compare the mean time to failure (MTTF) of seriesparallel systems containing five units each. Four different configurations are considered in this paper. It is assumed that failure and repair time of all units are assumed to be exponentially distributed. Explicit expressions for mean time to failure are derived, examined and compared. Analytical and numerical computations are presented to compare their mean time to failure. Cost/benefit measure have been obtained for all configurations, where the benefit is mean time to failure. From cost benefit analysis, analytical and numerical results, the optimal configuration is configuration II.

MSC 2010: 90B25, 68N30

Keywords: Mean time to failure, mixed standby, series parallel

Detecting equivalences of hypersurfaces using differential invariants

YASEMİN SAĞIROĞLU¹, UĞUR GÖZÜTOK²

^{1,2} Karadeniz Technical University, Trabzon, Turkey

emails: ¹sagiroglu.yasemin@gmail.com; ²ugurgozutok@ktu.edu.tr

Let $\{g_{i,j}\}_{i,j=1}^n$ and $\{L_{i,j}\}_{i,j=1}^n$ be the sets of all coefficients of the first and second fundamental forms of a hypersurface x in \mathbb{R}^{n+1} . For a connected open subset $U \cup \mathbb{R}^n$ and a C^{∞} -mapping $x : U \to \mathbb{R}^n$ the hypersurface x is said to be d-nondegenerate, where $d \in \{1, 2, ..., n\}$, if $L_{dd}(x) \neq 0$ for all $u \in U$. Let $M(n) = \{F : \mathbb{R}^n \to \mathbb{R}^n \mid Fx = gx + b, g \in O(n), b \in \mathbb{R}^n\}$, where O(n) is the group of all real orthogonal $n \times n$ -matrices, and $SM(n) = \{Fx = gx + b \in M(n) \mid g \in SO(n)\}$, where $SO(n) = \{g \in O(n) \mid det(g) = 1\}$. In the present study, it is proved that the set $\{g_{ij}(x), L_{dj}(x); i, j = 1, 2, ..., n\}$ is a complete system of the SM(n+1)-invariants of a d-nondegenerate hypersurface in \mathbb{R}^{n+1} . A similar result has obtained for the group M(n+1).

MSC 2010: 53A55, 53A07, 14J70

Keywords: Hypersurface, Bonnet's theorem, differential invariants

Dynamic implications of persistence in status concern

ÇAĞRI SAĞLAM¹, <u>MUSTAFA KEREM YÜKSEL²</u>

 1 Bilkent University, Ankara, Turkey 2 Atılım University, Ankara, Turkey

emails: ¹csaglam@bilkent.edu.tr; ²kerem.yuksel@atilim.edu.tr

This paper extends the models of *status concern* (*absolute wealth effect*) incorporating a memory effect. Infinitely lived representative household takes utility from her current as well as her past wealth

levels, i.e. $\tilde{k}(t) = \tilde{k}_0 e^{-at} + a \int_0^t k(\tau) e^{-a(t-\tau)} d\tau$. In this study, stability properties and transitional dynamics have been assessed. As is typical with the wealth (see [1] and [2] among others) in utility literature, wealth effect causes over-accumulation of capital. Over-accumulation increases as the density of the wealth in utility increases. Memory can drive the economy into short run fluctuations. It is shown that as the memory on the past status weakens, steady state level of capital as well as steady state consumption increases. Moreover, we show that as the economy gets more industrialized, the effects of the status concern and its persistence on the steady state level of capital weakens.

MSC 2010: 49L20, 34K35, 34H05

Keywords: Optimal growth model, wealth effects, distributed delay, optimal control of integrodifferential equations

- M. Kurz, Optimal Economic Growth and Wealth Effects. International Economic Review 9 (1968), no. 3, 348; doi:10.2307/2556231.
- H. Zou, The spirit of capitalism and long-run growth. European Journal of Political Economy 10 (1994), no. 2, 279–293; doi:10.1016/0176-2680(94)90020-5.

Maclaurin coefficient bounds for a subclass of bi-univalent functions associated with k-analogue of Bessel function

<u>F. MÜGE SAKAR¹</u>, ADNAN CANBULAT²

^{1,2} Dicle University, Diyarbakır, Türkiye

emails: ¹mugesakar@hotmail.com; ²canbulatadnan@hotmail.com

The theory of q-calculus plays an important role in many areas of mathematical, physical and engineering sciences. Jackson (see[4] and [5]) was the first to have some applications of the q-calculus and introduced the q-analogue of the classical derivative and integral operators [1]. Later, Srivastava and Bansal (see [3], pp. 62) used the q-analogue of derivative in Geometric function theory by introducing the q-generalization of starlike functions for the first time, see also [2], pp. 347 et seq.

In this presentation, using by the concept of q-calculus theory, we firstly present a new subclass of the bi-univalent functions class δ associated with k-analouge of Bessel function in the unit disc Λ . Moreover, we derive initial two coefficient estimates belong to this subclass. We also give some relevant consequence of our main theorem.

MSC 2010: 30C45, 30C50

Keywords: k-analouge of Bessel function, bi-univalent functions, coefficient bounds

- M. H. Abu-Risha, M. H. Annaby, M.-H. Ismail and Z. S. Mansour, Linear q-difference equations. Z. Anal. Anwend. 26 (2007), 481-494.
- H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 1 (2017), no. 1, 61-69.
- [3] H. M. Srivastava, D. Bansal, Univalent functions, fractional calculus, and associated generalized hypergeo-metric functions. In: Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, NewYork, Chichester, Brisbane and Toronto (1989), 329354.
- [4] F. H. Jackson, On q-functions and a certain difference operator. Earth Environ. Sci. Trans. Royal Soc. Edinburgh 46 (1909), 253-281.
- [5] F. H. Jackson, On q-definite integrals. Quart.J. Pure Appl, Math. 41 (1910), 193-203.

Freeness of generalized spline modules over polynomial rings

SAMET SARIOĞLAN¹, SELMA ALTINOK²

^{1,2}Hacettepe University, Ankara, Turkey

emails: ¹ssarioglan@hacettepe.edu.tr; ²sbhupal@hacettepe.edu.tr

Given a graph G whose edges are labeled by ideals of a commutative ring R with identity, a generalized spline is a vertex labeling by the elements of R such that the difference of the labels on adjacent vertices lies in the ideal associated to the edge. The set of generalized splines has a ring and an R-module structure.

In this talk we focus on the freeness of generalized spline modules in case of R is multivariate polynomial ring. We first introduce the syzygy module on the cycles of an edge labeled graph and the edge decomposition operation. We give some results related to the freeness of generalized spline modules via projective dimension of the module.

MSC 2010: 05C78, 13C10, 13F20 Keywords: Generalized splines, Polynomial rings, Projective dimension

- [1] L. Rose, Combinatorial and topological invariants of modules of piecewise polynomials. Adv. Math. 116 (1995), no. 1, 34–45. .
- [2] L. Rose, Graphs, syzygies, and multivariate splines. Discrete Comput. Geom. 32 (2004), no. 4, 623-637.

Finite element solution of MHD flow in a T-Junction

HARUN SELVİTOPİ

Erzurum Technical University, Erzurum, Turkey

email: harun.selvitopi@erzurum.edu.tr

In this work, numerical solution of the magnetohydrodynamic flow in a T-junction with 90° angle, the junction has two inlet and only one outlet, is acquired using finite element method. In the T-junction, the flow is organized as a combining flow like in [2]. As a solution procedure, we use the finite element method (FEM) both the reciprocal convention diffusion type MHD equations considering no-slip boundary conditions. The obtained numerical solutions displayed in terms of figures for the several values of the Hartmann number.

MSC 2010: 76W05, 74S05, 65N30 **Keywords:** MHD Flow, T-Junction, FEM

- [1] L. Dragoş, Maghnetofluid Dynamics. Abacus Press, Cambridge, 1975.
- [2] J. Štigler, R. Klas, M. Kotek, V. Kopecký, The Fluid Flow in the T-Junction. The Comparision of the Numerical Modeling and Piv Measurement. Pro. Engin. 29 (2012), 19–27; doi:10.1016/j.proeng.2012.07.003

On contra we^* -continuous functions

PINAR ŞAŞMAZ¹, MURAD ÖZKOÇ²

^{1,2} Muğla Sıtkı Koçman University, Muğla, Turkey

emails: ¹pinarsasmaz@posta.mu.edu.tr; ²murad.ozkoc@mu.edu.tr

One of the most important concepts of mathematics is undoubtedly the concept of continuity. Recently, weak and strong forms of the concept of continuity have been studied by many mathematicians. Both the characterizations and some basic properties of these concepts have been investigated. Some of these are w-continuity [1], contra continuity [2] and contra $w\beta$ -continuity [5]. In this study, the concept of contra we^* -continuity, which is weaker than the concept of contra $w\beta$ -continuity, is introduced and some characterizations of this concept are obtained. Also, some basic features of the concept of contra we^* -continuity have been investigated. The relations of this concept with other types of continuity in the literature are revealed.

MSC 2010: 54C05, 54C08, 54C10

Keywords: we*-open set, we*-closed set, contra we*-continuity

- [1] H. Hdeib, w-continuous functions. Dirasat Journal 16 (1989), no. 2, 136-153.
- [2] J. Dontchev, Contra continuous functions and strongly S-closed spaces. Internat. J. Math. Sci. 19 (1996), no. 2, 303-310.
- [3] A. Al-Omari and M.S.M. Noorani, Contra w-continuous and almost contra w-continuous. Internat. J. Math. Sci., 19 (2007), 13 pages; Article ID 40469 doi:10.1155/2007/40469
- [4] E. Ekici, On e^* -open sets and $(D, S)^*$ -sets. Math. Morav. **13** (2009), no. 1, 29-36.
- [5] H.H. Aljarrah, M.S.M. Noorani and T. Noiri, Contra $w\beta$ -continuity. Bol. Soc. Paran. Mat. 32, (2014), no. 2, 9-22.

On the automorphisms of generalized algebraic geometry codes

ENGİN ŞENEL¹, FİGEN ÖKE²

^{1,2}Trakya University, Edirne, Trkiye

emails: ¹enginsenel@trakya.edu.tr; ²figenoke@trakya.edu.tr

In this work, we have considered generalized algebraic geometry codes that formed by two collections of places with each places in one group have same degrees. We introduce a new specific subgroup of the automorphism group of an GAG code. We show that a certain subgroup of $Aut(F/\mathbb{F}_q)$ can be embedded into this subgroup on some conditions. Then we show that when corresponding function field F/\mathbb{F}_q is rational, this two subgroup can be isomorphic.

MSC 2010: 94B27, 14H37, 14H05

Keywords: Geometric Goppa codes, generalized algebraic geometry codes, code automorphisms, automorphism groups of function fields

- [1] A. Picone, Automorphisms of generalized algebraic geometry codes. Ph. D. Thesis, Universita degli Studi di Palermo, 2007.
- [2] A. G. Spera, Asymptotically Good Codes from Generalized Algebraic-Geometry Codes. *Designs, Codes and Cryptography* **37** (2005), 305312; doi:10.1007/s10623-004-3993-1.
- [3] A. Picone, Automorphisms of hyperelliptic GAG-codes. *Discrete Mathematics* **309** (2009), 328340; doi:10.1016/j.disc.2007.12.013.

Similar and self-similar null Cartan curves in Minkowski-Lorentzian spaces

HAKAN ŞİMŞEK

Antalya Bilim University, Antalya, TURKEY

email: hakan.simsek@antalya.edu.tr

In this paper, we study the similarity curvatures of null Cartan curves in the Minkowski (n+2)-Spaces. We investigate the fundamental theorem for a null Cartan curve in similarity geometry and we give the characterization of all self-similar null Cartan curves parameterized by pseudo-de Sitter parameter, which are null Cartan curves with constant curvatures in similarity geometry, in Minkowski space-time, de Sitter 3-space and hyperbolic 3-space.

MSC 2010: 53A35, 53A55, 53B30. Keywords: p-similarity, null Cartan curve, self-similar, Cartan curvatures

- [1] A. Bejancu, Lightlike curves in Lorentz manifolds. Publ. Math. Debrecen 44 (1994), 145–155.
- [2] A. C. Cöken and Ü. Ciftci, On the Cartan curvatures of a null curve in Minkowski space-time. Geom. Dedicata. 114 (2005), 71-78.
- [3] A. Ferrandez, A. Gimenez and P. Lucas, Null helices in Lorentzian space forms. Int. J. Mod. Phys. AJ. 16 (2001), 4845–4863.
- [4] A. Ferrandez, A. Gimenez and P. Lucas, Null generalized helices in Lorentz–Minkowski spaces. Journal of Physics A: Mathematical and General **35** (2002), 8243-8251.
- [5] H. Şimşek and M. Özdemir, Similar and Self-similar Curves in Minkowski n-space. Bull. Korean Math. Soc. 52 (2015), 2071-2093.
- [6] H, Şimşek and M. Özdemir, Some Results on p-Shape Curvatures of Non-Lightlike Space Curves. International Electronic Journal of Geometry 11 (2018), 61-70.
- [7] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, volume 364 of Mathematics and its Aplications. *Kluwer Academic Publishers Group*, *Dordrecht, The Netherlands*, 1996.
- [8] R. Encheva and G. Georgiev, Similar Frenet curves. Results in Mathematics 55 (2009), 359–372.
- [9] W. B. Bonnor, Null curves in a Minkowski space-time, Tensor N. S. 20 (1969), 229–242.
- [10] Y. Kamishima, Lorentzian similarity manifolds. Cent. Eur. J. Math. 10 (2012), 1771-1788.

Hybrid fixed point theorems for the multi-valued operators in WC-Banach algebras

CESİM TEMEL

Van Yuzuncu Yil University, Van, Turkey

email: cesimtemel@yyu.edu.tr

We give the multi-valued versions of hybrid fixed points of nonlinear operators in WC-Banach algebras. We also present the existence and uniqueness of hybrid fixed points of Krasnoselskii-type nonlinear inclusion of the form

$$u \in Pu + QuRu, \quad u \in U$$

in WC-Banach algebra A. Where U is a nonempty weakly closed convex subset of A, P is a linear multi-valued operator and R is a nonlinear multi-valued operator.

MSC 2010: 34K13, 47H04, 47H10

Keywords: Krasnoselskii fixed point theorem, weakly sequentially upper-semicontinuous operator, linear multi-valued operator

- [1] O. Arino, S. Gautier, J. P. Pento, A fixed point theorem for sequentially continuous mapping with application to ordinary differential equations. *Functional Ekvac.* **27** (1984), no. 3, 273-279.
- [2] C. Avramescu, A fixed points theorem for multivalued mapping. *Electronic J. Qualitative Theory of Differential Equations* 17 (2004), 1-10.
- [3] A. Jeribi, B. Krichen, B. Mefteh, Fixed point theory in WC-Banach algebras. Turk. J. Math. 40 (2016), 283-291.
- M. A. Krasnoselskii, Some problems of nonlinear analysis. Amer. Math. Soc. Trans. 10 (1958), no. 2, 345-409.
- [5] E. Zeidler, Nonlinear functional analysis and its applications, I: Fixed point theorems. Springer-Verlag, New York, 1986.

Some numerical results on the software HANSO

<u>ALİ HAKAN TOR</u>

Abdullah Gül University, Kayseri, Turkey

email: hakantor@gmail.com

Some numerical results obtained by using the software HANSO (Hybrid Algorithm for Non-Smooth Optimization) will be presented in this presentation. During the presentation, one can find all the details about the software HANSO by explaining how it works and which algorithms have been used. For these algorithms, a review will be given with details. In addition to this review, the characteristic of the test problems which are used for numerical experience will be also given briefly.

MSC 2010: 65K10, 90C90, 47X04 Keywords: Non-smooth optimization, BFGS, GSA

Evaluating the factors affecting success of students with the intuitionistic fuzzy PROMETHEE method

FERIDE TUĞRUL¹, MEHMET ÇİTİL²

^{1,2} Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey

emails: ¹feridetugrul@gmail.com; ²citil@ksu.edu.tr

In this study, an application of the PROMETHEE method, which is one of the multi criteria decision making methods, has been made in the field of education. The aim of this study; it is to create an algorithm that takes into account not only exam scores but also other factors affecting success of students. According to this algorithm, the factors affecting student achievement and exam scores have been evaluated together and the evaluation scores of the students have been calculated with the intuitionistic fuzzy PROMETHEE method. Thanks to this system that we will create, which will have the ability to apply not only in the field of education, but also in many fields, many factors will be evaluated simultaneously and different degrees of importance could be determined for each factor.

MSC 2010: 90B50, 03E72

Keywords: Multi criteria decision making, intuitionistic fuzzy sets, PROMETHEE method, success of students

Acknowledgement: Feride Tuğrul has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK 2211-A Domestic PhD Scholarship Program).

- [1] K. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1986), no. 1, 87-96.
- [2] B. Brans, L'ing'eni'erie de la decision; Elaboration d'instruments d'aide a lad'ecision. Lam'ethode PROMETHEE. In: L'aide a la d'ecision: Nature, Instruments et Perspectives d'Avenir, Qu'ebec, Canada, Presses de l'Universit'e Laval (1982), 183-213.
- [3] H. Liao, Z. S. Xu, Multi-criteria decision making with intuitionistic fuzzy PROMETHEE. Journal of Intelligent Fuzzy Systems 27 (2014), 1703-1717.
- [4] M. Majumder, Multi Criteria Decision Making. In: *Feasibility Model of Solar Energy Plants by* ANN and MCDM Techniques, Springer, Singapore (2016), 9-12.
- [5] E. Szmidt, J. Kacprzyk, Amount of information and its reliability in the ranking of Atanassov's intuitionistic fuzzy alternatives. In: *Recent advances in decision making (Studies in Computational Intelligence)*, Berlin, Germany: Springer (2009), 7-19.
- [6] Z. S. Xu, Intuitionistic preference relations and their application in group decision making. Information Sciences 177 (2007), no. 11, 2363-2379.
- [7] T.C. Milli Eğitim Bakanlığı. 2023 Eğitim Vizyonu, https://2023vizyonu.meb.gov.tr.

On the qualitative properties of solutions of certain neutral equations

CEMİL TUNÇ¹, <u>İREM AKBULUT ARIK</u>²

¹ Van Yuzuncu Yil University, Van, Turkey ² Siirt University, Siirt, Turkey

emails: ¹cemtunc@yahoo.com; ²iremmmatematik@gmail.com

Here, a nonlinear neutral differential equation with three variable delays is considered. A stability theorem is verified for the solutions of the considered equation. The technique of the proof is based on the Banach contraction mapping principle. We aim to contribute the literature. Our result includes and improves some former results on the stability of the solutions of delayed neutral differential equations, which are available in the literature. An example is provided to illustrate the proposed theorem. Our aim is to do a contribution to the qualitative theory of solutions.

MSC 2010: 34K20, 34D20

Keywords: Stability, Banach contraction mapping principle, (neutral) integro-differential equation, variable delay

- T. A. Burton, Stability by fixed point theory or Liapunov's theory: a comparison. Fixed Point Theory 4 (2003), 15–32.
- [2] I. Akbulut, C. Tunç, On the stability of solutions of neutral differential equations of first order. Int. J. Math. Comput. Sci. 14 (2019), no. 4, 849–866.
- [3] C. H. Jin, J. W. Luo, Fixed points and stability in neutral differential equations with variable delays. *Proc. Amer. Math. Soc.* **136** (2008), 909–918.
- [4] G. Chen, D. Lİ, O.Gaans, S. V. Lunel, Stability results for nonlinear functional differential equations using fixed point methods. *Indag. Math.* (N.S) **29** (2018), no.2,671-686.

On the qualitative criteria for integro-differential equations with Caputo fractional derivative and constant delays

$\underline{\text{CEMIL TUN}} CEMIL TUN C^1, \text{OSMAN TUN} C^2$

^{1,2} Van Yuzuncu Yil University, Van, Turkey

emails: ¹cemtunc@yahoo.com ; ²osmantunc89@gmail.com

The aim of paper is to investigate qualitative properties of solutions such as uniformly stability, asymptotically stability and boundedness of a non-linear Volterra integro -differential equations with Caputo fractional derivative and delays. To reach the aim of this paper, an appropriate Lyapunov function is defined, then by help of this function and the Lyapunov- Razumikhin method, some theorems, which include sufficient conditions, are proved on the mentioned concepts. As application, an example is provided to illustrate the proposed theorems. The obtained results are new, original and they have contributions to the topic of the paper and literature.

MSC 2010: 34D05, 34K20, 45J05

Keywords: Lyapunov- Razumikhin method, Lyapunov function, Volterra integrodifferential equation, stability, boundedness, integrability

- R. Agarwal, M. Bohner, A. Domoshnitsky and Y. Goltser, Floquet theory and stability of nonlinear integro-differential equations. Acta Math. Hungar. 109 (2005), no. 4, 305-330.
- [2] R. Agarwal, S. Hristova and D. ORegan, Lyapunov functions and stability of Caputo fractional differential equations with delays. *Differential Equations and Dynamical Systems* (2020), (in press).
- [3] J. K. Hale and S. M. Verduyn Lunel, Introduction to functional-differential equations. Applied Mathematical Sciences 99 Springer-Verlag, New York, 1993.
- [4] S. Hristova, C. Tunç, Stability of nonlinear Volterra integro-differential equations with Caputo fractional derivative and bounded delays. *Electron. J. Differential Equations* 2019 (2020), no. 30, 11 pp.
- [5] C. Tunç, On the qualitative analyses of integro-differential equations with constant time lag. Appl. Math. Inf. Sci. 14 (2020), no. 1, 57-63.
- [6] C. Tunç and O. Tunç, On the exponential study of solutions of Volterra integro-differential equations with time lag. *Electron. J. Math. Anal. Appl.* 6 (2018), no. 1, 253-265.
- [7] C. Tunç and O. Tunç, New results on the stability, integrability and boundedness in Volterra integro-differential equations. *Bull. Comput. Appl. Math.* 6 (2018), no. 1, 41-58.
- [8] C. Tunç and O. Tunç, New results on behaviors of functional Voltera integro-differential equations with multiple time-lags. *Jordan J. Math. Stat.* **11** (2018), no. 2, 107-124.
- [9] C. Tunç and O. Tunç, New qualitative criteria for solutions of Volterra integro-differential equations. Arab Journal of Basic and Applied Sciences 25 (2018), no.3, 158-165.

On the qualitative analysis of solutions of Volterra integro-differential equations with infinite delay

OSMAN TUNÇ

Van Yuzuncu Yil University, Van, Turkey

email: osmantunc89@gmail.com

We deal with a nonlinear Volterra integro-differential equation with infinite delay (IDDE). We prove three new results, which have sufficient conditions, on stability, uniformly stability and integrability of solutions of that IDDE. The proofs of the results are proceeded by Lyapunov-Krasovskii functionals. Our results extend and improve some results available in literature. We also give some example to illustrate the results.

MSC 2010: 45J05, 34K05, 34K20

Keywords: Nonlinear, Lyapunov-Krasovskii functional, Volterra, stability, uniformly stability, square integrability

- [1] Y. Raffoul, H. Rai, Uniform stability in nonlinear infinite delay Volterra integro-differential equations using Lyapunov functionals. *Nonauton. Dyn. Syst.* **3** (2016), no. 1, 14-23.
- [2] L. C. Becker, Principal matrix solutions and variation of parameters for a Volterra integrodifferential equation and its adjoint. *Electron. J. Qual. Theory Differ. Equ.* 2006 (2006), no. 14, 22 pp.
- [3] T. A. Burton, Boundedness and periodicity in integral and integro-differential equations. Differential Equations Dynam. Systems 1 (1993), no. 2, 161-172.
- [4] T. A. Burton, Volterra integral and differential equations. *Mathematics in Science and Engineer*ing, 202. Elsevier B. V., Amsterdam, 2005.
- [5] T. A. Burton, A Liapunov functional for a linear integral equation. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), no. 10, 10 pp.
- [6] X. Chang, R. Wang, Stability of perturbed n -dimensional Volterra differential equations. Nonlinear Anal. 74 (2011), no. 5, 1672-1675.
- [7] C. Tunç, O. Tunç, On the exponential study of solutions of Volterra integro-differential equations with time lag. *Electron. J. Math. Anal. Appl.* 6 (2018), no. 1, 253-265.

An approximate method for a delay differential equation with layer behavior

<u>SEVKET UNCU¹</u>, ERKAN CIMEN²

^{1,2} Van Yuzuncu Yil University, Van, Turkey

emails: ¹uncusevket@gmail.com; ²cimenerkan@hotmail.com

In this study, we consider the singularly perturbed initial-value problem for a class of second-order delay differential equation. We construct a fitted difference scheme on a uniform mesh and obtain first-order uniform convergence with respect to the perturbation parameter in the discrete maximum norm for the method. We also present the numerical results that support the theoretical results.

MSC 2010: 34K06, 65L05, 65L11, 65L12, 65L20 Keywords: Delay differential equation, initial layer, finite difference method, uniform convergence

- [1] H. G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods Singularly Perturbed Differential Equations. *Springer, Berlin*, 2008.
- [2] F. Erdogan and G. M. Amiraliyev, Fitted finite difference method for singularly perturbed delay differential equations. *Numer. Algor.* 59 (2012), 131–145.
- [3] M. Cakir, E. Cimen, I. Amirali and G. M. Amiraliyev, Numerical treatment of a quasilinear initial value problem with boundary layer. *Int. J. Comput. Math.* **93** (2016), 1845–1859.

Well ordered monotone iterative technique for a class of 2^{nd} order nonlinear 4-point Neumann BVPs

<u>NAZIA URUS</u>¹, AMIT KUMAR VERMA²

^{1,2} Indian Institute of Technology Patna, Patna, India

emails: ¹nazia.pma17@iitp.ac.in; ²akverma@iitp.ac.in

In this article we have explored Monotone Iterative Technique for a class of nonlinear four-point Neumann BVPs

$$-x''(t) = h(t, x, x'), x'(0) = \lambda x'(\alpha), \quad x'(1) = \delta x'(\beta),$$
(1)

where $0 < \lambda$, $\delta < 1$, $0 < \alpha \leq \beta < 1$. The nonlinear term $h(t, x, x') : \Omega \to \mathbb{R}$ is Lipschitz in x'(t)with Lipschitz contstant $K_2(t) \geq 0$, where $\Omega = [0, 1] \times \mathbb{R}^2$. To study the existence of solution of (1) we develop Monotone Iterative (MI) Technique, based on quasilinearization, in the presence of well ordered upper and lower solutions. To construct monotone sequences of upper and lower solutions with initial guesses we prove Maximum principle. Then under certain assumptions we prove that these sequences converges uniformly to the solution x(t) of (1) in the specific region, where $\frac{dh}{dx} < 0$. This article is extension of [1], where $\lambda = 0$. MI-technique is also discussed by Verma et. al. [2] for BVPs (1) with boundary conditions x'(0) = 0 and $x(1) = \lambda x(\alpha) + \delta x(\beta)$. To demonstrate that the proposed technique is quite effective we compute the solution of the nonlinear multipoint BVPs which may not be computed easily in closed form. We have used Mathematica 11.3 to verify the conditions and convergence of monotonic sequences.

MSC 2010: 34L30, 34B27, 34B15.

Keywords: Monotone iterative technique, Well ordered upper and lower solutions, Four-point nonlinear ODE, Green's function, Maximum principle.

Acknowledgement: I would like to thank to my supervisor Dr. Amit K. Verma. This work is totally supported by him.

- A. K. Verma, M. Singh, Existence of solutions for three-point BVPs arising in bridge design. *Electronic Journal of Differential Equations* 2014 (2014), no. 173, 1–11; http://ejde.math.txstate.edu.
- [2] A. K. Verma, N. Urus and M. Singh, Monotone iterative technique for a class of four point BVPs with reversed ordered upper and lower solutions. *International Journal of Computational Methods* 0 (2019), no. 0, 1950066; doi:10.1142/S021987621950066X.

Trans_maxima; A Maxima package for analytical solution of one dimensional linear system of transport equations

$\underline{\rm RIDVAN}\ {\rm YAPRAK}^1,$ ERHAN ${\rm CO}{\rm S}{\rm KUN}^2$

^{1,2} Karadeniz Technical University, Trabzon, Turkey

emails: ¹ridvanyaprak@ktu.edu.tr; ²erhan@ktu.edu.tr

In this study we aim to develop a Maxima [1] package for analytical solution of linear system of one dimensional transport equations of the form

$$U_t + AU_x = BU_{xx} + CU + D \tag{1}$$

where $U = \begin{bmatrix} u \\ v \end{bmatrix}$ is the vector of unknowns, A, B and C are 2 × 2 constant matrices and $D_{2\times 1}$ is a constant vector. The package aims to solve the system over a finite interval with Dirichlet and Neumann boundary conditions, as well as Robin conditions with the aid of some numerical methods that may be needed for numerical computation of eigenvalues. The package aims to interactively asks for problem data (the coefficient matrices, initial and boundary conditions) and display both analytical solution and its graph if desired. Initial results for scalar transport equation will be illustrated.

The motivation for the study came from a research work on wound healing model being studied by the authors.

MSC 2010: 35E05, 35E20, 35Q92, 35G35, 68U01

Keywords: Transport equation, analytic solution of partial differential equations, Maxima packages

- [1] Maxima, a Computer Algebra System, URL: http://maxima.sourceforge.net/.
- [2] E. Coşkun, Maxima ile Sembolik Hesaplama ve Kodlama, URL: http://erhancoskun.com.tr, Trabzon, 2018.
- [3] E. Coşkun, Maxima Uygulamalarıyla Lineer Kısmi Diferansiyel Denklemlere Giriş, URL: http://erhancoskun.com.tr.

On Z-symmetric manifold admitting projective curvature tensor

AYŞE YAVUZ TAŞCI¹, FÜSUN ÖZEN ZENGİN²

¹ Piri Reis University, Istanbul, Turkey
 ² Istanbul Technical University, Istanbul, Turkey

emails: ¹aytasci@pirireis.edu.tr; ²fozen@itu.edu.tr

The object of the present paper is to study the Z-symmetric manifold with projective curvature tensor. In this paper, we prove some theorems about these manifolds by using the properties of the Z-tensor. The existence of such notion is ensured by a non-trivial example.

MSC 2010: 53B20, 53C15, 53C25 Keywords: Codazzi tensor, harmonic function, recurrent tensor

- [1] A. Gray, Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259-280.
- [2] R. S. Mishra, Structures on Differentiable Manifold and Their Applications. *Chandrama Prakasana, Allahabad*, 1984.
- [3] K. Yano and S. Bochner, Curvature and Betti Numbers. Annals of Math. Studies 32, Princeton Univ. Press, Princeton (1953).
- [4] A. A. Shaikh and S. K. Hui, On weakly projective symmetric manifolds. Acta Math. Acad. Paedagog. Nyhazi (N.S.) 25 (2009), no. 2, 247-269.
- [5] U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds. *Tensor (N.S.)* 56 (1995), no. 3, 312-317.
- [6] E. M. Patterson, Some Theorems on Ricci-Recurrent Spaces. J. Lond. Math. Soc. 27 (1952), 287-295.

On the periodic solutions for a class of nonlinear *n*-th order differential equation with mixed delays

RAMAZAN YAZGAN

Van Yuzuncu Yil University, Van, Turkey

email: ryazgan503@gmail.com

In this paper, we use the coincidence degree theory to establish new results on the existence of T-periodic solutions for a class of nonlinear n-th order differential equations with mixed delays, which extend some previously known researches. Moreover, an example is given to illustrate the feasibility and application of the achieved results.

MSC 2010: 34C25, 34D40 Keywords: Periodic solutions, mixed delays, coincidence degree theory

- [1] J. Hale, Theory of Functional Differential Equations. Appl. Math. Sci., Vol. 3. Springer-Verlag, New York, 1977.
- [2] C. Zhao and B. Liu, Existence and uniqueness of periodic solutions for a class of nonlinear *n*-th order differential equations with delays. *Vietnam J. Math.* **37** (2009), 1-13.
- [3] M. L. Tang, X. G. Liu and X. B. Liu, New results on periodic solutions for a kind of Rayleigh equation. *Appl. Math.* **54** (2009), 79-85.
- [4] G. Degla, Degree theory for compact displacements of the identity and applications. *International Center for Theoretical Physics P.O. Box, Italy*, 1997.
- [5] R. E. Gaines, and J. L. Mawhin, Coincidence degree and nonlinear differential equations. Lecture Notes in Math. No. 568, Springer-Verlag, New York, 1977.

Maps corresponding to $\Gamma_0(N)$ for a non-transitive action of the normalizer

NAZLI YAZICI GÖZÜTOK

Karadeniz Technical University, Trabzon, Turkey.

email: nazliyazici@ktu.edu.tr

Recently, the authors in [1] investigated the maps corresponding to $\Gamma_0(N)$ where the normalizer of $\Gamma_0(N)$ in $PSL(2,\mathbb{R})$ is a triangle group. In their study, the normalizer acts transitively on the set of the extended rational numbers $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$.

In this study, we investigate the maps corresponding to $\Gamma_0(N)$ for a non-transitive action of the normalizer and N will denote a natural number of the form 2^3p^2 , where p > 3 is a prime. We start by defining a universal map arising from the non-transitive action of the normalizer. Then we construct the maps corresponding to $\Gamma_0(N)$ using the universal map. Once the maps are constructed, their vertices, edges, axes and faces will be obtained. One can see that the all maps obtained in this way will be quadrilateral.

MSC 2010: 05C10, 20H10, 57M60 Keywords: Regular maps, Modular group, Normalizer

References

[1] N. Yazici Gözütok, U. Gözütok and B.Ö. Güler, Maps corresponding to the subgroups $\Gamma_0(N)$ of the modular group. *Graphs and Combinatorics* **35** (2019), 1695-1705; doi:10.1007/s00373-019-02080-9

Some remarks on triangular norms on bounded lattices

MERVE YEŞİLYURT¹, ÜMİT ERTUĞRUL²

^{1,2} Karadeniz Technical University, Trabzon, Turkey

emails: ¹merveyesilyurt61@hotmail.com; ²uertugrul@ktu.edu.tr

Triangular norms and dually triangular conorms were firstly defined on the unit real interval [1,2] and extensively investigated in [3,4,7]. Afterward, triangular norms were defined on bounded lattices and studied in many respects [5,6,8].

In this paper, we discuss triangular norms on bounded lattices. Some construction methods are introduced and illustrated by examples. In addition, we show its difference from the current methods in the literature.

MSC 2010: 03E72, 03B52, 03G10, 18B35

Keywords: Triangular norms, bounded lattices, construction methods

- [1] B. Schweizer, A. Sklar, Probabilistic Metric Spaces. NewYork, North-Holland, 1983.
- [2] B. Schweizer, A. Sklar, Statistical Metric Spaces. Pacific Journal of Mathematics (1960), 313–334.
- [3] C. Alsina, B. Schweizer, and M. J. Frank, Associative Functions: Triangular Norms and Copulas. World Scientific, Singapore, 2006.
- [4] E.P. Klement, R. Mesiar, and E. Pap, Triangular Norms. *Kluwer Academic Publishers, Dordrecht*, 2000.
- [5] F. Karaçal, Ü. Ertuğrul, and M. N. Kesicioğlu, An Extension Method for T-norms on Subintervals to T-norms on Bounded Lattices. *Kybernetika* (2019), 976–993.
- [6] F. Karaçal, M. N. Kesicioğlu, and Ü. Ertuğrul, Generalized Convex Combination of Triangular Norms on Bounded Lattices. International Journal of General Systems (2019), 277–301.
- [7] M. Grabish, J. L. Marichal, R. Mesiar, and E. Pap, Aggregation Functions. *Cambridge University* Press, 2009.
- [8] Ü. Ertuğrul, M. N. Kesicioğlu, and F. Karaçal, Some New Construction Methods for T-norms on Bounded Lattices. International Journal of General Systems (2019), 775–791.

On the asymptotic stability of a nonlinear system with multiple delays

ABDULLAH YİĞİT

Van Yuzuncu Yil University, Van, TURKEY

email: a-yigit63@hotmail.com

This paper deals with delay-dependent stability of zero solution a nonlinear differential equation system with multiple time-varying delays. Based on the Jensen inequality, the Wirtinger inequality and the Lyapunov-Krasovskii functional approach, some new sufficient conditions are derived on the asymptotic stability of zero solution of the considered system. In addition, two numerical examples are given to show the applicability of the derived results by MATLAB-Simulink.

MSC 2010: 34K20, 34K06, 34K12

Keywords: Asymptotic stability, Lyapunov-Krasovskii functional, Jensen inequality, multiple delays, Wirtinger inequality

- R. K. R. Alla, J. S. Lather, G. L. Pahuja, New delay dependent stability criterion for linear system with time-varying delay using Wirtingers inequality. *Journal of Engineering Research* (2016), no. 4, 103-116.
- [2] Y. Altun, C. Tunç, On the estimates for solutions of a nonlinear neutral differential system with periodic coefficients and time-varying lag. *Palest. J. Math.* 8 (2019), no. 1, 105-120.
- [3] J. Li, Z. H. Chen, D. S. Cai, W. Zhen, Q. Huang, Delay-dependent stability control for power system with multiple time-delays. *IEEE Transactions on Power Systems* **31**, (2016), no. 3, 23162326.
- [4] V. Slynko, C. Tunç, Global asymptotic stability of nonlinear periodic impulsive equations. *Miskolc Math. Notes* 19 (2018), no. 1, 595610.

On discrete convex optimization of interval valued functions

<u>AWAIS YOUNUS¹</u>, ONSIA NISAR²

^{1,2} CASPAM, Bahauddin Zakariya University, Multan, Pakistan

emails: ¹awais@bzu.edu.pk; ²onsianisar@yahoo.com

In this paper, we study a class of convex type interval-valued functions on the domain of the product of discrete subsets of real numbers. By considering LW order relation on the class of closed intervals, we proposed some optimal solutions. LW convexity concepts and generalized Hukuhara differentiability (viz. delta and nabla) for interval-valued functions yield the necessary and sufficient conditions for an interval programming problem. Also, we compare our results with the results given in the literature. These results may open a new avenue for modeling and solve different types of optimization problems that involve discrete variables.

MSC 2010: 90C29, 90C30

Keywords: Interval-valued functions, delta-differentiability, KKT-optimality conditions

Index

Öke, Figen, 101 Özdın, Tufan, 91 Ozen Zengin, Füsun, 112 Ozkoç, Murad, 100 Cakan Akpinar, Rabia, 52 Çakan, Umit, 51 Cakmak, Musa, 53 Cetinkaya, Fatma Ayça, 54 Citil, Mehmet, 105 Coban, Hüsnü Anıl, 55, 71 Saşmaz, Pınar, 100 Samkar, Hatice, 73 Senel, Engin, 101 Şenoğlu, Birdal, 73 Sevli, Hamdullah, 27 Simşek, Hakan, 102 Akbulut Arık, İrem, 106 Akdoğan, Nazan, 30 Akinrefon, A. A., 85 Al-Labadi, Manal, 31 Al-Naimi, Raja'a, 32 Ala, Volkan, 58 Alan, Kübra, 66, 67 Aldemir, Mehmet Serif, 33 Alsoy-Akgün, Nagehan, 34 Altınbaş, Hasan, 35 Altınok, Selma, 36, 98 Altunkaya, Bülent, 35 Amiraliyev, Gabil M., 63 Anaç, Halil, 37 Arslan, Bahar, 38 Aslan, Ismail, 39 Aslankarayigit Ugurlu, Emel, 40 Ateş, Muzaffer, 41 Aydın, Abdullah, 42 Aydinlik, Soner, 43 Bağdatlı Yılmaz, Hülya, 44 Babagana, Mansur, 94 Badawi, Ayman, 20 Barbiero, Alessandro, 45 Baydaş, Şenay, 46 Biçer, Emel, 47

Bozkurt, Ali, 90 Cakır, Musa, 48, 63, 65 Can, Engin, 49 Canan, Ayşe, 86

Canbulat, Adnan, 97 Cancan, Murat, 33, 66, 67 Cimen, Erkan, 50, 65, 109 Coşkun, Erhan, 111 Düz, Murat, 64 Dizman, Tugbahan S., 90 Dağlı, Muhammet Cihat, 56 Dashkovskiv, Sergev, 21 Dede, Cahit, 57 Demirbilek, Ulviye, 58 Deniz, Ozlem, 59 Denizler, İsmail Hakkı, 60 Dilna, Nataliya, 22 Dinc, Yavuz, 61 Durgun, Yılmaz, 62 Durmaz, Muhammet Enes, 63 Duru, Hakkı, 48 Ediz, Süleyman, 33 Ekinci, Yılmaz, 65 Ertem Akbas, Elif, 66, 67 Ertuğrul, Ümit, 115 Eyidoğan, Sadk, 68 Fečkan, Michal, 22 Gözütok, Uğur, 71, 95 Gözen, Melek, 70 Gülbahar, Mehmet, 59 Gürbüz, Ceren, 67 Güven, Gamze, 73 Gorentas, Necat, 69 Guleroglu, Arzu, 72 Gunes, Baransel, 48 Gunes, Ece, 72 Hanoymak, Turgut, 74 Hitaj, Asmerilda, 45 Isık, Yasemin, 75 Küçük, Ahmet Zahid, 82 Küsmüş, Omer, 83 Küsmüş, Ömer, 74 Karakaş, Bülent, 46 Kartal, Senol, 76 Kaya, Guven, 76 Kayar, Zeynep, 23, 77 Kayenat, Sheerin, 78 Kaymakçalan, Billur, 23

Kaymakçalan, Billur, 77 Khalili Golmankheneh, Alireza, 24 Kiris, Ahmet, 43 Korkmaz, Emrah, 80 Korkmaz, Erdal, 81 Kula, Levent, 35 Kılınc, Veysel, 79

Lapin, Kirill, 84 Laz, Erkan, 51

Maden, Ayşe Dilek, 57 Magaji Alhaji, Umar, 85 Mak, Mahmut, 86 Mamedov, Khanlar R., 58, 79 Mansız, Kasım, 87 Mustafa, Najwa R., 88

Nesliye Pelen, Neslihan, 23 Nisar, Onsia, 117

Omokhuale, Emmanuel, 89 Ozmusul, Begum, 90

Pashaei, Seyed Zeynal, 69 Pişkin, Erhan, 61, 92

Qasim, Mohd, 93

Rezapour, Shahram, 25 Rontó, András, 22

Sağıroğlu, Yaemin, 71 Sağlam, Çağrı, 96 Sagir, Muhammad Aliyu, 94 Sakar, F. Müge, 97

Sarıoğlan, Samet, 36, 98 Sarıoğlu, Yasemin, 95 Schröcker, Hans-Peter, 26 Selvitopi, Harun, 99 Sezgin, Mehmet, 75 Temel, Cesim, 103 Tor, Ali Hakan, 104 Tuğrul, Feride, 105 Tunç, Cemil, 47, 61, 70, 87, 106, 107 Tunç, Osman, 107, 108 Tunc, Cemil, 81 Turkoglu, Elif Basak, 91 Uncu, Sevket, 109 Urus, Nazia, 110 Uysal, S. Aynur, 44 Verma, Amit K., 78 Verma, Amit Kumar, 110 Yüksekkaya, Hazal, 92 Yüksel, Mustafa Kerem, 96 Yaprak, Ridvan, 111 Yavuz Tasci, Ayse, 112 Yazıcı Gözütok, Nazlı, 114 Yazgan, Ramazan, 113 Yeşilyurt, Merve, 115 Yiğit, Abdullah, 116 Younus, Awais, 117 Yousef, Abdelrahman, 32 Yusuf, Ibrahim, 94

Zafer, Ağacık, 28