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Abstract

Let G be a locally compact abelian group with the dual group Γ and let

M (G) be the convolution measure algebra of G. By µ̂ we denote the Fourier-

Stieltjes transform of µ ∈M (G) :

µ̂ (γ) =

∫
G
γ (g) dµ (g) , γ ∈ Γ.

For n ∈ N, by µn we denote n−times convolution power of µ ∈ M (G).

A measure µ ∈ M (G) which satisfies supn∈N ‖µn‖ < ∞ is called power

bounded.

In the case when 1 < p ≤ 2, by f̂ we will denote the Hausdorff-Young-

Plancherel transform of f ∈ Lp (G) . For a closed subset F of Γ, by Lp (F )

we denote the set of all f ∈ Lp (G) such that f̂ = 0 almost everywhere on

F (f̂ is only defined up to sets of Haar measure zero).

We have the following.

Theorem. Let G be a locally compact abelian group and let µ ba a

power bounded measure on G. If 1 < p ≤ 2, then the following conditions

are equivalent for a closed subset F of Γ:

(a) limn→∞

∥∥∥∥ 1
n

n−1∑
k=0

µk ∗ f
∥∥∥∥
p

= 0, for all f ∈ Lp (F ) .

(b) µ̂ (γ) 6= 1, for all γ ∈ Γ�F.
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