SOME ERGODIC PROPERTIES OF MEASURES

Heybetkulu Mustafayev¹

Department of Mathematics, Faculty of Science, Yüzüncü Yıl University, 65080, Van, TURKEY

MSC 2000: 16S34, 16U60

Abstract

Let G be a locally compact abelian group with the dual group Γ and let M(G) be the convolution measure algebra of G. By $\hat{\mu}$ we denote the Fourier-Stieltjes transform of $\mu \in M(G)$:

$$\widehat{\mu}\left(\gamma\right)=\int_{G}\overline{\gamma}\left(g\right)d\mu\left(g\right),\ \gamma\in\Gamma.$$

For $n \in \mathbb{N}$, by μ^n we denote n-times convolution power of $\mu \in M(G)$. A measure $\mu \in M(G)$ which satisfies $\sup_{n \in \mathbb{N}} \|\mu^n\| < \infty$ is called *power* bounded.

In the case when $1 , by <math>\widehat{f}$ we will denote the Hausdorff-Young-Plancherel transform of $f \in L^p(G)$. For a closed subset F of Γ , by $L^p(F)$ we denote the set of all $f \in L^p(G)$ such that $\widehat{f} = 0$ almost everywhere on $F(\widehat{f} \text{ is only defined up to sets of Haar measure zero}).$

We have the following.

Theorem. Let G be a locally compact abelian group and let μ be a power bounded measure on G. If $1 , then the following conditions are equivalent for a closed subset F of <math>\Gamma$:

(a)
$$\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=0}^{n-1} \mu^k * f \right\|_p = 0$$
, for all $f \in L^p(F)$.
(b) $\widehat{\mu}(\gamma) \neq 1$, for all $\gamma \in \Gamma \setminus F$.

References

- [1] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin New York, 1985.
- [2] B. M. Schreiber, Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970) 405-431.
- [3] R. Jones, J. Rosenblatt, A. Tempelman, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math., 38 (1994) 521-553.
- [4] E. Kaniuth, A.T. Lau, A. Ülger, Power boundedness in Fourier and Fourier-Stieltjes algebras and other commutative Banach algebras, J. Funct. Anal. 260 (2011) 2366-2386.

¹hsmustafayev@yahoo.com