ON ALMOST PRIME IDEALS

Emine Serap KARACAN ${ }^{1}$, Emel A.UGURLU ${ }^{2}$, Unsal TEKIR ${ }^{3}$
${ }^{1,2,3}$ Marmara University, Istanbul, Turkey

MSC 2000: 13A15

Abstract

This work consists only of a survey [1]. In this talk, we study almost prime ideals. Throughout this study, R denotes commutative ring with identity. We give some theorems about characterization of almost prime ideals.

Theorem : For a proper ideal I of R the following are equivalent:

1. I is almost prime.
2. For $x \in R-I,(I: x)=I \cup\left(I^{2}: x\right)$.
3. For $x \in R-I,(I: x)=I$ or $(I: x)=\left(I^{2}: x\right)$.
4. For ideals A and B of R with $A B \subseteq I$, but $A B \nsubseteq I^{2}$, then $A \subseteq I$ or $B \subseteq I$.

Theorem : For a proper ideal I of R the following are equivalent:

1. I is n-almost prime.
2. For $x \in R-I,(I: x)=I \cup\left(I^{n}: x\right)$.
3. For $x \in R-I,(I: x)=I$ or $(I: x)=\left(I^{n}: x\right)$.
4. For ideals A and B of R with $A B \subseteq I$, but $A B \nsubseteq I^{n}$, then $A \subseteq I$ or $B \subseteq I$.

Theorem : Let R and S be any two commutative rings. Then an ideal of $R \times S$ is almost prime if and only if it has one of the following three forms,

1. $I \times S$, where I is an almost prime ideal of R.
2. $R \times J$, where J is an almost prime ideal of S.
3. $I \times J$, where I is an idempotent ideal of R and J is an idempotent ideal of S.

Keywords: Almost prime ideals, n-almost prime, idempotent ideal.

References

[1] Malik Bataineh, Generalization of Prime Ideals(Thesis), (2006)University of Iowa.
[2] D.D. Anderson ve E. Smith. Weakly Prime Ideals. Houston Journal of Mathematics, (2003) 29(4):831-840.

[^0]
[^0]: ${ }^{1}$ emine.s.karacan@hotmail.com
 ${ }^{2}$ emel.aslankarayigit@marmara.edu.tr
 ${ }^{3}$ utekir@marmara.edu.tr

