THE RELATIONSHIP BETWEEN N $^{ m th}$ LUCAS NUMBER AND A SEQUENCE DEFINED BY M-SEQUENCES

Engin Ozkan¹, Aykut Ger², İpek Altun³

^{1,2,3} Erzincan University, Erzincan, Turkey

Abstract

In this work, we consider the sequence whose nth term is the number of M-sequences of length n^{th} [6]. We define the set of integer vectors E(n) on the sequence. We show that the cardinality of E(n) is the n^{th} Lucas number L_n . We also give some theorem related to L_n and E(n).

Keywords: nth Lucas Number, M-Sequences, cardinality

References

- Snellman J. And Paulsen M. Enumeration of concave integer partitions,
 J. Integer Seq. 7 (1) 10. Article 04.1.3. MR2049698. (2004)
- [2] Kili, E. And Tasci, D., Generalized order-k Fibonacci and Lucas numbers, Rocky Mountain J. Math. 38, 2008, 19912008.
- [3] Koshy T. Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, John Wiley&SonsInc., ISBN: 978-0-471-39969-8, 2001.
- [4] zkan, E. On Truncated Fibonacci Sequences, Indian J. Pure of and App. Mathematics, 38(4), 2007, 241-251.
- [5] zkan, E., Aydn, H. and Dikici, R. 3-step Fibonacci series modulo, Applied Mathematics and Computation, 143, 2003, 165-172.
- [6] Enkosky T. Stone B. A sequence defined by M-sequences, Discrete Mathematics 333 (2014) 3538.
- [7] J. M. Ferreira and A. M. Pedro, Oscillations of delay difference systems, J. Math. Anal. Appl. 221 (1998) 364-383.

¹eozkan@erzincan.edu.tr

²aykut_2057@hotmail.com

³ipekaltun21@hotmail.com